cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380923 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = -3.

Original entry on oeis.org

25, 245, 1250, 2401, 4235, 12250, 41503, 62500, 73205, 120050, 136045, 138985, 211750, 215215, 612500, 717409, 1176490, 1333241, 1362053, 1856465, 2075150, 2109107, 2351635, 2402455, 3125000, 3660250, 3720145, 4561235, 5330605, 5535985, 6002500, 6802250, 6949250
Offset: 1

Views

Author

Paolo P. Lava, Mar 03 2025

Keywords

Examples

			138985 = 5*7*11*19^2 = 138985/(5-3) +138985/(7-3) +138985/(11-3) +138985*2/(19-3)
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) global k,n,v; v:=[];
    for n from 1 to q do if n mod 3>0 then if n=add(n*k[2]/(k[1]+h),k=ifactors(n)[2]) then v:=[op(v),n];
    print(n); fi; fi; od; op(v); end: P(6949250,-3);

A380928 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = 5.

Original entry on oeis.org

128, 6561, 6624, 250047, 252448, 253125, 264627, 267168, 290871, 293664, 342792, 377622, 381248, 557424, 648432, 762696, 841824, 1109052, 2198208, 2374464, 2472384, 5018304, 9529569, 9646875, 9765625, 10085229, 10209375, 10673289, 10775776, 11085417, 11211291
Offset: 1

Views

Author

Paolo P. Lava, Mar 04 2025

Keywords

Examples

			648432 = 2^4*3^3*19*79 = 648432*4/(2+5) + 648432*3/(3+5) + 648432/(19+5) + 648432/(79+5).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local k, n, v; v:=[];
    for n from 1 to q do if n=add(n*k[2]/(k[1]+h), k=ifactors(n)[2]) then v:=[op(v), n];
    fi; od; op(v); end: P(11211291, 5);
  • Mathematica
    s={};j=5;f[{a_,b_}]:=Table[a,b];Do[pf=f/@FactorInteger[k]//Flatten;L=Length[pf];If[Sum[k/(pf[[i]]+j),{i,L}]==k,AppendTo[s,k]],{k,3*10^6}];s (* James C. McMahon, Mar 04 2025 *)

A380925 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = -4.

Original entry on oeis.org

5, 75, 100, 343, 1125, 1500, 2000, 5145, 6860, 16875, 22500, 30000, 40000, 77175, 102900, 107653, 137200, 253125, 337500, 352947, 450000, 470596, 600000, 800000, 1157625, 1543500, 1614795, 2058000, 2153060, 2744000, 3796875, 5062500, 5294205, 6750000, 7058940
Offset: 1

Views

Author

Paolo P. Lava, Mar 03 2025

Keywords

Examples

			337500 = 2^2*3^3*5^5 = 337500*2/(2-4) + 337500*3/(3-4) + 337500*5/(5-4)
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local k, n, v; v:=[];
    for n from 1 to q do if n=add(n*k[2]/(k[1]+h), k=ifactors(n)[2]) then v:=[op(v), n];
    fi; od; op(v); end: P(7058940, -4);
Showing 1-3 of 3 results.