A380888 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = -1.
2, 9, 75, 625, 1029, 1365, 8575, 11375, 24843, 32955, 73815, 117649, 156065, 207025, 274625, 483153, 599781, 615125, 866481, 1008273, 1252815, 1337505, 1343433, 1553937, 1782105, 1955085, 2061345, 2840383, 3051015, 3432165, 3737085, 3767855, 4026275, 4998175
Offset: 1
Keywords
Examples
73815 = 3*5*7*19*37 = 73815/(3-1) + 73815/(5-1) + 73815/(7-1) + 73815/(19-1) + 73815/(37-1); 599781 = 3*7*13^4 = 599781/(3-1) + 599781/(7-1) + 599781*4/(13-1).
Links
- Robert Israel, Table of n, a(n) for n = 1..213
Programs
-
Maple
with(numtheory): P:=proc(q,h) local k,n,v; v:=[]; for n from 1 to q do if n=add(n*k[2]/(k[1]+h),k=ifactors(n)[2]) then v:=[op(v),n]; fi; od; op(v); end: P(4998175,-1);
Comments