cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380947 Numerators of rational coefficients which are ratio of Brent's coefficients -A[n,2]/A343480.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 5, 5, 23, 39, 63, 17, 209, 185, 1207, 127, 765, 15543, 2499, 1139, 2257, 6327, 309, 21527, 2189, 64273, 6127, 883, 21681, 3835077, 30537, 188579, 7091843, 47895, 8447, 556651, 541, 1978953, 22046359, 1726463, 188751, 45916389, 575107, 2289527, 968180019, 283521, 50207679, 7450167293, 385389, 86547757
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2025

Keywords

Comments

Brent's coefficients -A[n,2]/A343480 are rationals = A380947(n)/A380948(n).
Number of primes with distance to next prime = 2*n between two particular numbers j and k is ~ equal Integrate_{s,j,k} Sum_{m,1,m_max} A[n,m]/log(s)^(m+1).
Brent's coefficients A[n,1]/A114907 = B[n,1]/A114907 are equal to A380839(n)/A307410(n).
Real Brent's coefficients A[n,2] = -A343480*A380947(n)/A380948(n).
Integer Brent's coefficients T[n,2] = A381085(n).
Maximal values of the coefficients A380947(n)/A380948(n) occurs when n=105*k where k=1,2,3,4,....
Minimal values of the coefficients A380947(n)/A380948(n) occurs when n=2^k where k=0, 1,2,3,4,....

Crossrefs

Programs

  • Mathematica
    (* starting vector tr2 taken from A381085 *)
    tr2 ={0, 0, 2, 4, 6, 56, 40, 40, 92, 624, 504, 10880, 6688, 7400, 19312};
    ww = {}; long=15;Do[kk = PrimePi[n + 1]; prod = 1;
     Do[prod = prod (Prime[n] - 1), {n, 2, kk}];
     AppendTo[ww, prod], {n, 1, long}]; sr2 = {}; Do[
     AppendTo[sr2, tr2[[n]]/ww[[n]]], {n, 1, long}]; fr2 = {}; uu = {}; Do[
     pr1 = 1; kk = PrimePi[p + 1]; pr3 = 1;
     Do[pr2 = 1; jj = Min[2, Prime[n] - 2];
      Do[pr2 = pr2 (1 - m/((Prime[n] - 1) (Prime[n] - m))), {m, 1, jj}];
      pr1 = pr1 pr2; pr3 = pr3 Prime[n]/(Prime[n] - 1), {n, 2, kk}];
     pr3 = (-2 pr3)^2/pr1; AppendTo[fr2, pr3], {p, 1, long}]; ar2 = {}; Do[
     AppendTo[ar2, fr2[[n]] sr2[[n]]/12], {n, 1, long}]; Numerator[ar2]