A380947 Numerators of rational coefficients which are ratio of Brent's coefficients -A[n,2]/A343480.
0, 0, 1, 1, 3, 7, 5, 5, 23, 39, 63, 17, 209, 185, 1207, 127, 765, 15543, 2499, 1139, 2257, 6327, 309, 21527, 2189, 64273, 6127, 883, 21681, 3835077, 30537, 188579, 7091843, 47895, 8447, 556651, 541, 1978953, 22046359, 1726463, 188751, 45916389, 575107, 2289527, 968180019, 283521, 50207679, 7450167293, 385389, 86547757
Offset: 1
Links
- R. P. Brent, Empirical evidence for a proposed distribution of small prime gaps, Technical report NO. CS 123 (1969) Stanford University.
- R. P. Brent, Tables of T[r,k] and A[r,k], (1970) [unpublished].
- R. P. Brent, The distribution of small gaps between successive primes, Mathematics of Computation 28 (1974), 315-324, JSTOR
- Artur Jasinski, List of coefficients A380947(n)/A380948(n) for n <= 717
Programs
-
Mathematica
(* starting vector tr2 taken from A381085 *) tr2 ={0, 0, 2, 4, 6, 56, 40, 40, 92, 624, 504, 10880, 6688, 7400, 19312}; ww = {}; long=15;Do[kk = PrimePi[n + 1]; prod = 1; Do[prod = prod (Prime[n] - 1), {n, 2, kk}]; AppendTo[ww, prod], {n, 1, long}]; sr2 = {}; Do[ AppendTo[sr2, tr2[[n]]/ww[[n]]], {n, 1, long}]; fr2 = {}; uu = {}; Do[ pr1 = 1; kk = PrimePi[p + 1]; pr3 = 1; Do[pr2 = 1; jj = Min[2, Prime[n] - 2]; Do[pr2 = pr2 (1 - m/((Prime[n] - 1) (Prime[n] - m))), {m, 1, jj}]; pr1 = pr1 pr2; pr3 = pr3 Prime[n]/(Prime[n] - 1), {n, 2, kk}]; pr3 = (-2 pr3)^2/pr1; AppendTo[fr2, pr3], {p, 1, long}]; ar2 = {}; Do[ AppendTo[ar2, fr2[[n]] sr2[[n]]/12], {n, 1, long}]; Numerator[ar2]
Comments