cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380962 Number of ways to place eight distinct positive integers on a square, four on the corners and four on the sides such that the sum of the three values on each side is n.

Original entry on oeis.org

3, 9, 23, 48, 84, 132, 226, 304, 456, 629, 849, 1079, 1501, 1794, 2317, 2898, 3519, 4195, 5288, 6049, 7282, 8605, 10017, 11494, 13662, 15273, 17680, 20231, 22842, 25573, 29432, 32353, 36463, 40791, 45216, 49803, 55926, 60759, 67295, 74071, 80929, 88034, 97283, 104713, 114359, 124383, 134526, 144957, 158110
Offset: 12

Views

Author

Derek Holton and Alex Holton, Feb 09 2025

Keywords

Comments

Solutions differing by only rotation or reflections are not counted separately.

Examples

			for n = 12, one of the a(12) = 3 possible arrangements of numbers is
  2  6  4
  9     5
  1  8  3
The 3 numbers of each side sum to 12, eg. 2+9+1 = 12.
		

Crossrefs

Cf. A380853 (order 3 perimeter magic triangles), A005994 (8 elements need not be distinct), A006325 (8 elements need not be distinct, rotat+flips count separately)

Formula

Conjecture: a(n)= -2*a(n-1) -3*a(n-2) -2*a(n-3) +3*a(n-5) +6*a(n-6) +8*a(n-7) +9*a(n-8) +7*a(n-9) +3*a(n-10) -4*a(n-11) -10*a(n-12) -15*a(n-13) -16*a(n-14) -14*a(n-15) -8*a(n-16) +8*a(n-18) +14*a(n-19) +16*a(n-20) +15*a(n-21) +10*a(n-22) +4*a(n-23) -3*a(n-24) -7*a(n-25) -9*a(n-26) -8*a(n-27) -6*a(n-28) -3*a(n-29) +2*a(n-31) +3*a(n-32) +2*a(n-33) +a(n-34). - R. J. Mathar, Mar 04 2025
Conjecture: g.f. ( -x^12 *(3045*x^12 +2826*x^11 +2520*x^10 +2079*x^9 +1625*x^8 +1173*x^7 +793*x^6 +267*x^4 +481*x^5 +98*x^22 +236*x^21 +491*x^20 +796*x^19 +1231*x^18 +1673*x^17 +2187*x^16 +2580*x^15 +2906*x^14 +3038*x^13 +127*x^3 +3 +15*x +50*x^2) ) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+1)^2 *(1+x)^3 *(1+x+x^2)^3 *(x-1)^5 ). - R. J. Mathar, Mar 04 2025