cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Derek Holton

Derek Holton's wiki page.

Derek Holton has authored 4 sequences.

A380963 The number of perimeter-magic pentagons of order 3 with magic sum n.

Original entry on oeis.org

1, 9, 33, 75, 233, 374, 742, 1294, 2042, 3029, 4931, 6535, 9507, 13214, 17577, 22762, 31335, 38341, 49660, 62791, 77689, 94239, 119151, 139727, 170553, 204832, 242122, 282811, 340914, 388834, 456668, 530819, 609982, 694982, 810204, 906951, 1038672
Offset: 14

Author

Derek Holton and Alex Holton, Feb 09 2025

Keywords

Comments

The requirements are that there are 3 integers at each side of the pentagon (2 of them shared by adjacent sides), which sum up to n. All 10 integers on the 5 sides must be distinct. Pentagons obtained by reflections or rotations are considered to be the same.
If the 10 integers do not need to be distinct and if solutions by rotations around the five-fold symmetry axis and flips are considered distinct, there are A244497(n-3) perimeter-magic pentagons. - R. J. Mathar, Mar 10 2025

Examples

			for n = 14, a(14) = 1           5
                              6    7
                            3         2
                             10      8
                              1  9  4
		

Crossrefs

Cf. A380962 (perimeter-magic squares), A380853 (perimeter-magic triangles), A380964 (perimeter-magic hexagons).

A380964 Perimeter-magic hexagons of order 3 with magic sum n.

Original entry on oeis.org

9, 48, 150, 494, 1202, 2542, 4635, 9738, 14943, 25917, 41196, 62518, 89657, 139743, 185114, 264483, 363291, 485411, 630099, 862106, 1067459, 1391011, 1771817, 2210554, 2712337, 3461467, 4115434, 5073010, 6165577, 7387876, 8748214, 10655591, 12333486, 14679050, 17281206
Offset: 17

Author

Derek Holton and Alex Holton, Feb 09 2025

Keywords

Comments

Each side of the hexagon has 3 integers (=the order), 2 of them shared by adjacent sides. All 12 integers on the vertices must be distinct. Solutions obtained by rotations around the 6-fold axis or flips are considered the same/equivalent (bracelet symmetry).
A244879(n-3) counts the perimeter-magic hexagons of order 3 if the 12 integers do not need to be distinct and if solutions by rotations/reflections are considered distinct. - R. J. Mathar, Mar 10 2025

Examples

			For magic sum 17, a(17) = 9. One of the hexagons is   5   9   3
                                                    10          8
                                                   2             6
                                                    14          7
                                                      1   12   4
		

Crossrefs

Cf. A380853 (triangles), A380962 (squares), A380963 (pentagons).

Extensions

More terms from Bert Dobbelaere, Mar 15 2025

A380962 Number of ways to place eight distinct positive integers on a square, four on the corners and four on the sides such that the sum of the three values on each side is n.

Original entry on oeis.org

3, 9, 23, 48, 84, 132, 226, 304, 456, 629, 849, 1079, 1501, 1794, 2317, 2898, 3519, 4195, 5288, 6049, 7282, 8605, 10017, 11494, 13662, 15273, 17680, 20231, 22842, 25573, 29432, 32353, 36463, 40791, 45216, 49803, 55926, 60759, 67295, 74071, 80929, 88034, 97283, 104713, 114359, 124383, 134526, 144957, 158110
Offset: 12

Author

Derek Holton and Alex Holton, Feb 09 2025

Keywords

Comments

Solutions differing by only rotation or reflections are not counted separately.

Examples

			for n = 12, one of the a(12) = 3 possible arrangements of numbers is
  2  6  4
  9     5
  1  8  3
The 3 numbers of each side sum to 12, eg. 2+9+1 = 12.
		

Crossrefs

Cf. A380853 (order 3 perimeter magic triangles), A005994 (8 elements need not be distinct), A006325 (8 elements need not be distinct, rotat+flips count separately)

Formula

Conjecture: a(n)= -2*a(n-1) -3*a(n-2) -2*a(n-3) +3*a(n-5) +6*a(n-6) +8*a(n-7) +9*a(n-8) +7*a(n-9) +3*a(n-10) -4*a(n-11) -10*a(n-12) -15*a(n-13) -16*a(n-14) -14*a(n-15) -8*a(n-16) +8*a(n-18) +14*a(n-19) +16*a(n-20) +15*a(n-21) +10*a(n-22) +4*a(n-23) -3*a(n-24) -7*a(n-25) -9*a(n-26) -8*a(n-27) -6*a(n-28) -3*a(n-29) +2*a(n-31) +3*a(n-32) +2*a(n-33) +a(n-34). - R. J. Mathar, Mar 04 2025
Conjecture: g.f. ( -x^12 *(3045*x^12 +2826*x^11 +2520*x^10 +2079*x^9 +1625*x^8 +1173*x^7 +793*x^6 +267*x^4 +481*x^5 +98*x^22 +236*x^21 +491*x^20 +796*x^19 +1231*x^18 +1673*x^17 +2187*x^16 +2580*x^15 +2906*x^14 +3038*x^13 +127*x^3 +3 +15*x +50*x^2) ) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+1)^2 *(1+x)^3 *(1+x+x^2)^3 *(x-1)^5 ). - R. J. Mathar, Mar 04 2025

A380853 Number of ways to place six distinct positive integers on a triangle, three on the corners and three on the sides such that the sum of the three values on each side is n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 13, 14, 25, 37, 47, 58, 89, 98, 126, 159, 188, 219, 276, 303, 362, 423, 478, 536, 633, 688, 781, 881, 973, 1068, 1211, 1301, 1443, 1589, 1724, 1866, 2066, 2202, 2396, 2598, 2790, 2986, 3250, 3439, 3699, 3967, 4219, 4480, 4819, 5071
Offset: 1

Author

Derek Holton and Alex Holton, Feb 06 2025

Keywords

Comments

Solutions differing by only rotation or reflections are not counted separately.
If the numbers do not need to be distinct and rotations and reflections are counted separately we get A019298(n-2). If the numbers do not need to be distinct but rotations and reflections do not count separately we get A006918(n-2). If the six numbers must be distinct and reflections and rotations count separately we get 6*a(n). - R. J. Mathar, Feb 27 2025

Examples

			The a(9) = 1 solution is:
       1
     5   6
   3   4   2
		

Crossrefs

Programs

Formula

G.f.: x^9*(1 + 4*x + 8*x^2 + 16*x^3 + 18*x^4 + 18*x^5 + 15*x^6 + 10*x^7)/((1 - x)^4*(1 + 2*x + 2*x^2 + x^3)^2*(1 + x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6)). - Stefano Spezia, Feb 08 2025
A380105(n) = a(n)-a(n-3). - R. J. Mathar, Mar 13 2025