A380962 Number of ways to place eight distinct positive integers on a square, four on the corners and four on the sides such that the sum of the three values on each side is n.
3, 9, 23, 48, 84, 132, 226, 304, 456, 629, 849, 1079, 1501, 1794, 2317, 2898, 3519, 4195, 5288, 6049, 7282, 8605, 10017, 11494, 13662, 15273, 17680, 20231, 22842, 25573, 29432, 32353, 36463, 40791, 45216, 49803, 55926, 60759, 67295, 74071, 80929, 88034, 97283, 104713, 114359, 124383, 134526, 144957, 158110
Offset: 12
Examples
for n = 12, one of the a(12) = 3 possible arrangements of numbers is 2 6 4 9 5 1 8 3 The 3 numbers of each side sum to 12, eg. 2+9+1 = 12.
Links
- R. J. Mathar, Generating perimeter-magic polygons, C++ (2025)
Crossrefs
Formula
Conjecture: a(n)= -2*a(n-1) -3*a(n-2) -2*a(n-3) +3*a(n-5) +6*a(n-6) +8*a(n-7) +9*a(n-8) +7*a(n-9) +3*a(n-10) -4*a(n-11) -10*a(n-12) -15*a(n-13) -16*a(n-14) -14*a(n-15) -8*a(n-16) +8*a(n-18) +14*a(n-19) +16*a(n-20) +15*a(n-21) +10*a(n-22) +4*a(n-23) -3*a(n-24) -7*a(n-25) -9*a(n-26) -8*a(n-27) -6*a(n-28) -3*a(n-29) +2*a(n-31) +3*a(n-32) +2*a(n-33) +a(n-34). - R. J. Mathar, Mar 04 2025
Conjecture: g.f. ( -x^12 *(3045*x^12 +2826*x^11 +2520*x^10 +2079*x^9 +1625*x^8 +1173*x^7 +793*x^6 +267*x^4 +481*x^5 +98*x^22 +236*x^21 +491*x^20 +796*x^19 +1231*x^18 +1673*x^17 +2187*x^16 +2580*x^15 +2906*x^14 +3038*x^13 +127*x^3 +3 +15*x +50*x^2) ) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+1)^2 *(1+x)^3 *(1+x+x^2)^3 *(x-1)^5 ). - R. J. Mathar, Mar 04 2025
Comments