A381030 Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes.
1, 2, 2, 2, 4, 5, 3, 11, 20, 12, 3, 17, 60, 68, 35, 4, 32, 151, 302, 289, 108, 4, 45, 322, 955, 1523, 1151, 369, 5, 71, 633, 2617, 5942, 7384, 4792, 1285, 5, 94, 1132, 6179, 19061, 33819, 35188, 19603, 4655, 6, 134, 1930, 13374, 52966, 125940, 184938, 164036, 80820, 17073, 6, 170, 3095, 26567, 131717, 400119, 778318, 969972
Offset: 2
Examples
The table begins as follows: n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+------------------------------------------------------------------ 2| 1 2 2 3 3 4 4 5 5 6 6 3| 2 4 11 17 32 45 71 94 134 170 4| 5 20 60 151 322 633 1132 1930 3095 5| 12 68 302 955 2617 6179 13374 26567 6| 35 289 1523 5942 19061 52966 131717 7| 108 1151 7384 33819 125940 400119 8| 369 4792 35188 184938 778318 9| 1285 19603 164036 969972 10| 4655 80820 753310 11| 17073 331373 12| 63600
Links
- Dmitry Kamenetsky and Tristrom Cooke, Tiling rectangles with holey polyominoes, arXiv:1411.2699 [cs.CG], 2015.
Formula
First row, a(2,k) = floor((k+3)/2).
Comments