A381057 Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes counting as distinct different formations of transparent squares.
1, 2, 2, 3, 5, 5, 6, 17, 24, 12, 10, 41, 101, 89, 35, 20, 106, 353, 535, 382, 108, 36, 243, 1091, 2355, 2769, 1566, 369, 72, 567, 3095, 8937, 14841, 13739, 6569, 1285, 136, 1259, 8209, 29744, 65651, 86322, 66499, 27205, 4655, 272, 2806, 20804, 90914, 252277, 439879, 479343, 314445, 112886, 17073, 528, 6113, 50801, 259078, 872526
Offset: 2
Examples
The table begins as follows: n\k| 0 1 2 3 4 5 6 7 8 9 10 --+-------------------------------------------------------------------------- 2| 1 2 3 6 10 20 36 72 136 272 528 3| 2 5 17 41 106 243 567 1259 2806 6113 4| 5 24 101 353 1091 3095 8209 20804 50801 5| 12 89 535 2355 8937 29744 90914 259078 6| 35 382 2769 14841 65651 252277 872526 7| 108 1566 13739 86322 439879 1917387 8| 369 6569 66499 479343 2759969 9| 1285 27205 314445 2555903 10| 4655 112886 1461335 11| 17073 466178 12| 63600
Links
- Dmitry Kamenetsky and Tristrom Cooke, Tiling rectangles with holey polyominoes, arXiv:1411.2699 [cs.CG], 2015.
Comments