A381059 Array read by ascending antidiagonals: A(n,k) = numerator(binomial(n-1/2,k)) with k >=0.
1, 1, -1, 1, 1, 3, 1, 3, -1, -5, 1, 5, 3, 1, 35, 1, 7, 15, -1, -5, -63, 1, 9, 35, 5, 3, 7, 231, 1, 11, 63, 35, -5, -3, -21, -429, 1, 13, 99, 105, 35, 3, 7, 33, 6435, 1, 15, 143, 231, 315, -7, -5, -9, -429, -12155, 1, 17, 195, 429, 1155, 63, 7, 5, 99, 715, 46189
Offset: 0
Examples
The array of the binomial coefficients for half-integers begins as: 1, -1/2, 3/8, -5/16, 35/128, -63/256, ... 1, 1/2, -1/8, 1/16, -5/128, 7/256, ... 1, 3/2, 3/8, -1/16, 3/128, -3/256, ... 1, 5/2, 15/8, 5/16, -5/128, 3/256, ... 1, 7/2, 35/8, 35/16, 35/128, -7/256, ... 1, 9/2, 63/8, 105/16, 315/128, 63/256, ... 1, 11/2, 99/8, 231/16, 1155/128, 693/256, ... ...
Links
- Stefano Spezia, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals of the array)
- Gábor Hegedüs, Sho Suda, and Ziqing Xiang, Codes with symmetric distances, arXiv:2501.11461 [math.CO], 2025. See p. 10.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=Numerator[Binomial[n-1/2,k]]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *) A[n_,k_]:=Numerator[(2n-1)!!/((2(n-k)-1)!!2^k k!)]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Comments