A381078 Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1
Keywords
Examples
The prime indices of 60 are {1,1,2,3}, with set multipartitions: {{1},{1,2,3}} {{1,2},{1,3}} {{1},{1},{2,3}} {{1},{2},{1,3}} {{1},{3},{1,2}} {{1},{1},{2},{3}} with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Crossrefs
For distinct blocks we have A381441.
The lower version is A381454.
For distinct block-sums we have A381634.
Other multiset partitions of prime indices:
A000040 lists the primes.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
Comments