A381102
Irregular triangle read by rows. For each j, 1<=j<=n properly color the vertices of a labeled graph on [n] using each of the first j colors in the color set {c1=0, 0<=k<=binomial(n,2).
1, 1, 4, 1, 36, 27, 9, 1, 696, 983, 731, 330, 93, 15, 1, 27808, 60615, 72662, 59113, 35197, 15731, 5269, 1287, 216, 22, 1, 2257888, 6803655, 11412586, 13504721, 12316799, 9026017, 5427090, 2700863, 1112555, 376459, 103002, 22203, 3619, 417, 30, 1
Offset: 0
Examples
1; 1; 4, 1; 36, 27, 9, 1; 696, 983, 731, 330, 93, 15, 1; 27808, 60615, 72662, 59113, 35197, 15731, 5269, 1287, 216, 22, 1; ...
Links
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 20 Mar 2020.
Programs
-
Mathematica
nn = 5; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - (e[z] - 1)), {z, 0, nn}], z] /. y -> 1] // Grid
Comments