A381141 Expansion of e.g.f. exp( -LambertW(-x * cos(x)) ).
1, 1, 3, 13, 89, 821, 9667, 137817, 2306705, 44308009, 960645251, 23205700453, 618086944873, 17996847978461, 568729575572355, 19387150575025201, 709130794848586657, 27704208465508996945, 1151379111946617111043, 50721472225191792506301, 2360928161776701549045241
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Programs
-
PARI
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j)); a(n) = sum(k=0, n, (k+1)^(k-1)*I^(n-k)*a185951(n, k));
Formula
E.g.f. A(x) satisfies A(x) = exp( x * cos(x) * A(x) ).
a(n) = Sum_{k=0..n} (k+1)^(k-1) * i^(n-k) * A185951(n,k), where i is the imaginary unit.
Comments