A381187 Triangle T(n,k) read by rows whose n-th row is the lexicographically first n-tuple of ordered positive integers with sum A380887(n) and product A380887(n) * 100^(n-1).
1, 200, 200, 150, 175, 200, 125, 160, 175, 184, 125, 125, 160, 165, 184, 125, 125, 144, 150, 160, 160, 125, 125, 128, 144, 150, 150, 150, 110, 125, 125, 125, 128, 150, 150, 176, 125, 125, 125, 125, 128, 128, 132, 150, 150, 120, 120, 125, 125, 125, 125, 128, 128, 150, 150
Offset: 1
Examples
Triangle begins: 1, 200, 200, 150, 175, 200, 125, 160, 175, 184, 125, 125, 160, 165, 184, 125, 125, 144, 150, 160, 160, 125, 125, 128, 144, 150, 150, 150, 110, 125, 125, 125, 128, 150, 150, 176, 125, 125, 125, 125, 128, 128, 132, 150, 150, 120, 120, 125, 125, 125, 125, 128, 128, 150, 150, 115, 122, 125, 125, 125, 125, 125, 125, 128, 128, 160, 104, 125, 125, 125, 125, 125, 125, 125, 128, 128, 128, 145, ... For n = 8 there are three 8-tuples with sum A380887(8) = 1089 and product 100^7 * 1089, namely (110, 125, 125, 125, 128, 150, 150, 176), (120, 125, 125, 125, 125, 128, 165, 176), (121, 125, 125, 125, 125, 128, 160, 180). The first of these is the lexicographically smallest and thus is row 8 of the triangle.
Links
- David A. Corneth, Table of n, a(n) for n = 1..45150 (first 528 terms from Hugo Pfoertner and Markus Sigg)