A380887 a(n) is the smallest positive integer s that can be partitioned into n positive integers whose product is s * 100^(n-1).
1, 400, 525, 644, 759, 864, 972, 1089, 1188, 1296, 1403, 1508, 1612, 1722, 1827, 1932, 2040, 2145, 2250, 2354, 2457, 2565, 2668, 2772, 2880, 2988, 3087, 3192, 3294, 3399, 3498, 3604, 3705, 3810, 3915, 4018, 4116, 4221, 4323, 4425, 4536, 4635, 4732, 4836, 4940
Offset: 1
Keywords
Examples
a(2) = 400 because 200 + 200 = 400 and 200 * 200 = 400 * 100^1 and no positive integer smaller than 400 exists with the requested properties. For a(3) the sum is 525 = 150 + 175 + 200. For a(4) it is 644 = 125 + 160 + 175 + 184. For a(5) it is 759 = 125 + 125 + 160 + 165 + 184.
Links
- David A. Corneth, Table of n, a(n) for n = 1..300
- Alex Bellos, Can you solve it? Sexy maths, 2. The 7-Eleven, The Guardian, 3 Feb 2025.
- David A. Corneth, PARI program
- Markus Sigg, PARI program suitable for calculating a(n) for up to about n = 30.
Programs
-
PARI
\\ See Sigg link
-
PARI
\\ See Corneth link
Extensions
a(8)-a(9) from Hugo Pfoertner, Feb 13 2025
a(10)-a(12) from Hugo Pfoertner, Feb 16 2025
a(13) from Karl-Heinz Hofmann, Mar 02 2025
a(14)-a(30) from Markus Sigg, Mar 27 2025
a(31)-a(32) from Markus Sigg, Apr 23 2025
a(33)-a(45) from Jinyuan Wang, May 01 2025
Comments