cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383026 Triangle T(n,k) read by rows whose n-th row is the lexicographically first n-tuple of ordered distinct positive integers with sum A382547(n) and product A382547(n) * 100^(n-1), or an n-tuple of zeros when A382547(n) = 0.

Original entry on oeis.org

1, 180, 225, 150, 175, 200, 125, 160, 175, 184, 125, 127, 150, 160, 200, 100, 125, 140, 150, 175, 192, 80, 100, 125, 150, 160, 173, 250, 80, 100, 110, 125, 140, 150, 200, 250, 50, 100, 112, 125, 150, 155, 160, 200, 250, 50, 80, 100, 125, 128, 150, 170, 175, 200, 250
Offset: 1

Views

Author

Markus Sigg, Apr 13 2025

Keywords

Comments

Because A382547(n) > 0 for only finitely many n, the triangle has only finitely many nonzero rows.

Examples

			Triangle begins:
    1,
  180, 225,
  150, 175, 200,
  125, 160, 175, 184,
  125, 127, 150, 160, 200,
  100, 125, 140, 150, 175, 192,
   80, 100, 125, 150, 160, 173, 250,
   80, 100, 110, 125, 140, 150, 200, 250,
   50, 100, 112, 125, 150, 155, 160, 200, 250,
   50,  80, 100, 125, 128, 150, 170, 175, 200, 250,
   50,  65,  75, 100, 125, 128, 150, 175, 200, 250, 320,
   25,  50,  80, 100, 125, 128, 150, 200, 225, 230, 250, 300,
  ...
For n = 6 there are three 6-tuples with sum A382547(6) = 882 and product 100^5 * 882, namely (100, 125, 140, 150, 175, 192), (100, 125, 147, 150, 160, 200), (112, 120, 125, 150, 175, 200). The first of these is the lexicographically smallest and thus is row 6 of the triangle.
		

Crossrefs

A380887 a(n) is the smallest positive integer s that can be partitioned into n positive integers whose product is s * 100^(n-1).

Original entry on oeis.org

1, 400, 525, 644, 759, 864, 972, 1089, 1188, 1296, 1403, 1508, 1612, 1722, 1827, 1932, 2040, 2145, 2250, 2354, 2457, 2565, 2668, 2772, 2880, 2988, 3087, 3192, 3294, 3399, 3498, 3604, 3705, 3810, 3915, 4018, 4116, 4221, 4323, 4425, 4536, 4635, 4732, 4836, 4940
Offset: 1

Views

Author

Markus Sigg, Feb 07 2025

Keywords

Comments

The AM-GM inequality shows a(n) >= 100 * n^(n/(n-1)). This bound gives a(2) >= 400, a(3) >= 520, a(4) >= 635, a(5) >= 748, a(6) >= 859.
a(n) is 100 times the smallest price r such that n prices exist whose sum and product both are equal to r. For example (see Guardian article link) 7.11 = 1.20 + 1.25 + 1.50 + 3.16 = 1.20 * 1.25 * 1.50 * 3.16.
Upper bounds for the next terms a(31)-a(40) are 3498, 3604, 3705, 3810, 3915, 4018, 4116, 4221, 4323, 4425. - Karl-Heinz Hofmann, Mar 26 2025
a(n) is well-defined: For n > 1, the sum of the numbers 1, ..., 1, k+1, k*(k+n-1), where the first n-2 numbers are 1 and k = 100^(n-1), is an example (possibly the largest one) of a positive integer s with the required properties. - Markus Sigg, Mar 30 2025
Better upper bounds can be given for specific values of n: Let s > 1 be an integer number and n = 2^s-s. Then the n-tuple of n-s times the number 100 and s times the number 200 has the required properties, hence a(2^s-s) <= 100*(n-s) + 200*s = 100 * 2^s. For s = 6, together with the lower bound from above, this gives 6229 <= a(58) <= 6400. - Markus Sigg, Apr 22 2025
For every n, the n-tuple (100, ..., 100, 10100, n + 99) has the required properties, hence a(n) <= 101*n + 9999. - Markus Sigg, May 30 2025

Examples

			a(2) = 400 because 200 + 200 = 400 and 200 * 200 = 400 * 100^1 and no positive integer smaller than 400 exists with the requested properties.
For a(3) the sum is 525 = 150 + 175 + 200.
For a(4) it is 644 = 125 + 160 + 175 + 184.
For a(5) it is 759 = 125 + 125 + 160 + 165 + 184.
		

Crossrefs

Programs

  • PARI
    \\ See Sigg link
    
  • PARI
    \\ See Corneth link

Extensions

a(8)-a(9) from Hugo Pfoertner, Feb 13 2025
a(10)-a(12) from Hugo Pfoertner, Feb 16 2025
a(13) from Karl-Heinz Hofmann, Mar 02 2025
a(14)-a(30) from Markus Sigg, Mar 27 2025
a(31)-a(32) from Markus Sigg, Apr 23 2025
a(33)-a(45) from Jinyuan Wang, May 01 2025

A381187 Triangle T(n,k) read by rows whose n-th row is the lexicographically first n-tuple of ordered positive integers with sum A380887(n) and product A380887(n) * 100^(n-1).

Original entry on oeis.org

1, 200, 200, 150, 175, 200, 125, 160, 175, 184, 125, 125, 160, 165, 184, 125, 125, 144, 150, 160, 160, 125, 125, 128, 144, 150, 150, 150, 110, 125, 125, 125, 128, 150, 150, 176, 125, 125, 125, 125, 128, 128, 132, 150, 150, 120, 120, 125, 125, 125, 125, 128, 128, 150, 150
Offset: 1

Views

Author

Markus Sigg, Feb 16 2025

Keywords

Examples

			Triangle begins:
    1,
  200, 200,
  150, 175, 200,
  125, 160, 175, 184,
  125, 125, 160, 165, 184,
  125, 125, 144, 150, 160, 160,
  125, 125, 128, 144, 150, 150, 150,
  110, 125, 125, 125, 128, 150, 150, 176,
  125, 125, 125, 125, 128, 128, 132, 150, 150,
  120, 120, 125, 125, 125, 125, 128, 128, 150, 150,
  115, 122, 125, 125, 125, 125, 125, 125, 128, 128, 160,
  104, 125, 125, 125, 125, 125, 125, 125, 128, 128, 128, 145,
  ...
For n = 8 there are three 8-tuples with sum A380887(8) = 1089 and product 100^7 * 1089, namely (110, 125, 125, 125, 128, 150, 150, 176), (120, 125, 125, 125, 125, 128, 165, 176), (121, 125, 125, 125, 125, 128, 160, 180). The first of these is the lexicographically smallest and thus is row 8 of the triangle.
		

Crossrefs

Showing 1-3 of 3 results.