A381192
Irregular triangle read by rows. Properly color the vertices of a simple labeled graph on [n] using exactly n colors c_1=0, 0<=k<=binomial(n,2).
1, 1, 3, 1, 21, 19, 7, 1, 315, 516, 419, 208, 65, 12, 1, 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1, 615195, 2080323, 3769767, 4754751, 4592847, 3555479, 2257723, 1188595, 519745, 187705, 55237, 12941, 2325, 301, 25, 1
Offset: 0
Examples
1; 1; 3, 1; 21, 19, 7, 1; 315, 516, 419, 208, 65, 12, 1; 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1; ...
Links
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 20 Mar 2020.
Programs
-
Mathematica
nn = 6; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - z), {z, 0, nn}], z] /. y -> 1] // Grid
Comments