A381247 Positive integers m such that m * (m+1) contains at least 8 decimal digits that are in neither m nor m+1.
77776, 88888, 444554, 554544, 655555, 656565, 656665, 888787, 888888, 1111121, 1212121, 1222121, 2212121, 2222232, 2222332, 2223222, 2232222, 2322322, 2332222, 3223232, 3223332, 3232222, 3233322, 3322332, 3323232, 3443443, 4334443, 4343443, 4444443, 4544444, 5444444, 5445554, 5455454
Offset: 1
Examples
77776*77777 = 6049183952 which has 8 new digits. 88888*88889 = 79011'65432, (with ' inserted to separate 1st and 2nd half of digits) 888888*888889 = 7901233'8765432, 8888888*8888889 = 790123456'098765432, 88888888*88888889 = 79012345678'32098765432, 888888888*888888889 = 7901234567900'5432098765432, etc. It appears that only the last digit of the first part may be off by +-1 from the digit that would follow according to the periodic pattern. - _M. F. Hasler_, Feb 18 2025
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A381248.
Programs
-
Maple
filter:= proc(t) nops(convert(convert(t*(t+1),base,10),set) minus (convert(convert(t,base,10),set) union convert(convert(t+1,base,10),set))) = 8 end proc [Maple code is missing some punctuation! - N. J. A. Sloane, Feb 19 2025] f:= proc(d) local Cands,i,s,S; Cands:= {seq(i*(10^d-1)/9, i=1..9), seq(seq(i*(10^d-1)/9 + add(10^s,s=S),i=1..8),S=combinat:-powerset({$1..d-1}))}; sort(convert(select(filter,Cands),list)) end proc: seq(op(f(d)),d=1..7); # Robert Israel, Feb 18 2025
-
PARI
select( {is_A381247(n)=#setminus(Set(digits(n*(n+1))), Set(concat(digits(n), digits(n+1))))>7}, [10^4..10^5]) for(n=1,1e7, is_A381247(n)&& print1(n", "))
Extensions
More terms from Michel Marcus, Feb 18 2025
Comments