A381257 Numbers k such that 6*k+1 divides 6^k+1.
0, 1, 6, 30, 58, 70, 73, 90, 101, 105, 121, 125, 146, 153, 166, 170, 181, 182, 185, 210, 233, 241, 242, 266, 282, 290, 322, 373, 381, 385, 390, 397, 441, 445, 446, 450, 453, 530, 557, 562, 585, 593, 601, 602, 605, 606, 621, 646, 653, 670, 685, 710, 726, 805, 810, 817, 833, 837, 853, 866
Offset: 1
Keywords
Examples
6*30+1 = 181 divides 6^30+1 = 221073919720733357899777.
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.
Links
- Giovanni Resta,Curzon numbers , Numbers Aplenty.
Programs
-
Mathematica
Select[Range[0, 866], PowerMod[6, #, 6#+1]==6#&] (* James C. McMahon, Apr 02 2025 *)
-
PARI
isok(n) = my(m=6*n+1); Mod(6, m)^n==-1
Comments