René-Louis Clerc has authored 19 sequences. Here are the ten most recent ones:
A384793
a(n) is the start of the first occurrence of exactly n consecutive zeroless primes (A038618).
Original entry on oeis.org
461717, 162119, 75431, 81421, 19661, 5923, 4813, 1319, 2917, 1117, 1721, 521, 911, 613, 311, 11519, 25411, 7321, 7717, 8819, 9413, 5519, 9613, 2311, 2, 41213, 16319, 1423, 21121, 8219, 162221, 71233, 113, 68521, 148627, 192611, 86531, 48413, 269219, 13313, 275521, 11113, 111521
Offset: 1
a(25) = 2 because the 25 primes 2, 3, ..., 97 don't have a zero in their decimal representation, terminated by 101.
a(1) = 461717 because it is the smallest zeroless prime, whose nearest lower and upper prime neighbors 461707 and 461801 both have at least one zero in their decimal representation.
A383919
Primes made up of 0's and seven 1's only.
Original entry on oeis.org
11110111, 11111101, 101101111, 101111011, 110111011, 111010111, 1001110111, 1010011111, 1011110011, 1100101111, 1101010111, 1101110011, 1110011101, 1110110011, 1111100101, 1111110001, 10010110111, 10011101011, 10011110101, 10100111101, 10111001011, 10111110001, 11001011101
Offset: 1
-
list(M) = for(i=3, M, for(j=2, i-1, for(k=1, j-1, for(r=1, k-1, for(l=1, r-1, for(m=1, l-1, my(p=10^i+10^j+10^k+10^r+10^l+10^m+1); isprime(p) && print1(p, ", ")))))))
-
from itertools import count, islice
from sympy import isprime
def A383919_gen(): # generator of terms
for a in count(6):
for b in range(5,a):
for c in range(4,b):
for d in range(3,c):
for e in range(2,d):
for f in range(1,e):
if isprime(p:=10**a+10**b+10**c+10**d+10**e+10**f|1):
yield(p)
A383919_list = list(islice(A383919_gen(),23)) # Chai Wah Wu, May 28 2025
A383918
Primes made up of 0's and five 1's only.
Original entry on oeis.org
101111, 10011101, 10101101, 10110011, 10111001, 11000111, 11100101, 100100111, 100111001, 101001011, 101100011, 110010101, 110101001, 111000101, 111001001, 1000011011, 1000110101, 1001000111, 1001001011, 1001010011, 1010000111, 1010001101, 1010010011, 1010100011, 1010110001
Offset: 1
-
f:= proc(n) local R,c,i;
sort(select(isprime, [seq(1+10^(n-1) + add(10^i,i=c), c=combinat:-choose(n-2,3))]))
end proc:
map(op,[seq(f(i),i=6..10)]); # Robert Israel, May 29 2025
-
list(M) = for(i=3, M, for(j=2, i-1, for(k=1, j-1, for(r=1, k-1, my(p=10^i+10^j+10^k+10^r+1); isprime(p) && print1(p, ", ")))))
-
from itertools import count, islice
from sympy import isprime
def A383918_gen(): # generator of terms
for a in count(4):
for b in range(3,a):
for c in range(2,b):
for d in range(1,c):
if isprime(p:=10**a+10**b+10**c+10**d|1):
yield(p)
A383918_list = list(islice(A383918_gen(),30)) # Chai Wah Wu, May 29 2025
A381257
Numbers k such that 6*k+1 divides 6^k+1.
Original entry on oeis.org
0, 1, 6, 30, 58, 70, 73, 90, 101, 105, 121, 125, 146, 153, 166, 170, 181, 182, 185, 210, 233, 241, 242, 266, 282, 290, 322, 373, 381, 385, 390, 397, 441, 445, 446, 450, 453, 530, 557, 562, 585, 593, 601, 602, 605, 606, 621, 646, 653, 670, 685, 710, 726, 805, 810, 817, 833, 837, 853, 866
Offset: 1
6*30+1 = 181 divides 6^30+1 = 221073919720733357899777.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.
-
Select[Range[0, 866], PowerMod[6, #, 6#+1]==6#&] (* James C. McMahon, Apr 02 2025 *)
-
isok(n) = my(m=6*n+1); Mod(6, m)^n==-1
A381256
Numbers k such that 5*k+1 divides 5^k+1.
Original entry on oeis.org
0, 1, 625, 57057, 7748433, 30850281, 111494625, 393423745, 499088601, 519341361, 1051107705, 1329416385, 1616038425, 2215448001, 2433936225, 2852972265, 3399207273, 4344683849, 4961725281, 5454760185, 5485530369, 6578054145, 6678031745, 7701979761, 7807302825
Offset: 1
5*625+1 = 3126 divides 5^625+1.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.
A381258
Numbers k such that 7*k+1 divides 7^k+1.
Original entry on oeis.org
0, 1, 135, 5733, 11229, 42705, 50445, 117649, 131365, 168093, 636405, 699825, 1269495, 2528155, 4226175, 6176709, 6502545, 9365265, 9551115, 13227021, 14464485, 14912625, 20859435, 26903605, 28251265, 30589905, 32660901, 37597329, 41506875, 42766465, 55452075, 56192535, 111898605
Offset: 1
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.
-
Select[Range[0,10^7],PowerMod[7,#,7#+1]==7#&] (* James C. McMahon, Mar 05 2025 *)
-
isok(n) = my(m=7*n+1); Mod(7, m)^n==-1
A379767
Triangle read by rows: row n lists numbers which are the n-th powers of their digit sum.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 81, 0, 1, 512, 4913, 5832, 17576, 19683, 0, 1, 2401, 234256, 390625, 614656, 1679616, 0, 1, 17210368, 52521875, 60466176, 205962976, 0, 1, 34012224, 8303765625, 24794911296, 68719476736, 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432
Offset: 1
Triangle begins:
1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
2 | 0, 1, 81;
3 | 0, 1, 512, 4913, 5832, 17576, 19683;
4 | 0, 1, 2401, 234256, 390625, 614656, 1679616;
5 | 0, 1, 17210368, 52521875, 60466176, 205962976;
6 | 0, 1, 34012224, 8303765625, 24794911296, 68719476736;
7 | 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432;
8 | 0, 1, 20047612231936, 72301961339136, 248155780267521;
9 | 0, 1, 3904305912313344, 45848500718449031, 150094635296999121;
...
-
R(n) = for(j=2,oo, if((j*9)^n <10^j, return(j)));
row(n) = my(L=List()); for (k=0, sqrtnint(10^R(n),n), if (k^n == sumdigits(k^n)^n, listput(L, k^n))); Vec(L)
A375344
First term p1 of octuplets of consecutive prime numbers pi with given successive gaps pi-p1, i=2, ...,8 (6, 8, 18, 24, 30, 36, 38).
Original entry on oeis.org
233, 2721413, 154670903, 200559053, 232777673, 273788363, 299267663, 459117353, 527326403, 1015923113, 1563572243, 1688692763, 2426018723, 2918492243, 3743134523, 4445599853, 4458163943, 4697619593, 5493835013, 5546977823, 5930389313, 6131660663, 6470661143, 7598587943
Offset: 1
233, 239, 241, 251, 257, 263, 269, 271 (sum = 2024).
2721413, 2721419, 2721421, 2721431, 2721437, 2721443, 2721449, 2721451 (sum = 21771464).
-
uplet(p)= {n=0;for(i=p, p+38, if(isprime(i), n+=1));n}
octo(m)={for(p=3,p=10^m,if(isprime(p) && isprime(p+6) && isprime(p+8) && isprime(p+18) && isprime(p+24) && isprime(p+30) && isprime(p+36) && isprime(p+38) && uplet(p)==8,print1(p,", ")))}
listocto(p1)=print1(p1,", ", p1+6,", ", p1+8,", ", p1+18,", ", p1+24,", ", p1+30,", ", p1+36", ", p1+38)
A375343
Numbers which are the sixth powers of their digit sum.
Original entry on oeis.org
0, 1, 34012224, 8303765625, 24794911296, 68719476736
Offset: 1
68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^6 = 64^6.
-
for (k=0, sqrtnint(10^13,6), if (k^6 == sumdigits(k^6)^6, print1(k^6, ", ")); )
A371338
Numbers k>0 such that k = |(product of nonzero digits of k^2) - (sum of digits of k^2)|.
Original entry on oeis.org
161, 198, 1701, 604755, 629810, 4354506, 100018736, 411505847, 14869757951891, 2239397044538572646, 40766979086355529727820, 6289762487609138872319999999757
Offset: 1
1701^2 = 2893401, |(2*8*9*3*4*1) - (2+8+9+3+4+1)| = 1728 - 27 = 1701.
-
SmP(k,r)=my(d=select(x->(x>0),digits(k^r))); abs(vecsum(d)- vecprod(d)) == k;
resuSmP(p,r)={for(k=1,10^p,if(SmP(k,r)==1, print1(k,";")))}
Comments