cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: René-Louis Clerc

René-Louis Clerc's wiki page.

René-Louis Clerc has authored 19 sequences. Here are the ten most recent ones:

A384793 a(n) is the start of the first occurrence of exactly n consecutive zeroless primes (A038618).

Original entry on oeis.org

461717, 162119, 75431, 81421, 19661, 5923, 4813, 1319, 2917, 1117, 1721, 521, 911, 613, 311, 11519, 25411, 7321, 7717, 8819, 9413, 5519, 9613, 2311, 2, 41213, 16319, 1423, 21121, 8219, 162221, 71233, 113, 68521, 148627, 192611, 86531, 48413, 269219, 13313, 275521, 11113, 111521
Offset: 1

Author

Hugo Pfoertner, based on an idea by René-Louis Clerc, Jun 20 2025

Keywords

Examples

			a(25) = 2 because the 25 primes 2, 3, ..., 97 don't have a zero in their decimal representation, terminated by 101.
a(1) = 461717 because it is the smallest zeroless prime, whose nearest lower and upper prime neighbors 461707 and 461801 both have at least one zero in their decimal representation.
		

Crossrefs

A383919 Primes made up of 0's and seven 1's only.

Original entry on oeis.org

11110111, 11111101, 101101111, 101111011, 110111011, 111010111, 1001110111, 1010011111, 1011110011, 1100101111, 1101010111, 1101110011, 1110011101, 1110110011, 1111100101, 1111110001, 10010110111, 10011101011, 10011110101, 10100111101, 10111001011, 10111110001, 11001011101
Offset: 1

Author

René-Louis Clerc, May 15 2025

Keywords

Comments

Expression of the primes that are 0-successors of the preprime 1111111 (= 239*4649); they constitute the infinite set of secondary primes with seven 1's and zeros denoted {1111111} (Definitions 1, 2, 3, 4 of Clerc).

Crossrefs

Intersection of A020449 and A062337.

Programs

  • PARI
    list(M) = for(i=3, M, for(j=2, i-1, for(k=1, j-1, for(r=1, k-1, for(l=1, r-1, for(m=1, l-1, my(p=10^i+10^j+10^k+10^r+10^l+10^m+1); isprime(p) && print1(p, ", ")))))))
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A383919_gen(): # generator of terms
        for a in count(6):
            for b in range(5,a):
                for c in range(4,b):
                    for d in range(3,c):
                        for e in range(2,d):
                            for f in range(1,e):
                                if isprime(p:=10**a+10**b+10**c+10**d+10**e+10**f|1):
                                    yield(p)
    A383919_list = list(islice(A383919_gen(),23)) # Chai Wah Wu, May 28 2025

A383918 Primes made up of 0's and five 1's only.

Original entry on oeis.org

101111, 10011101, 10101101, 10110011, 10111001, 11000111, 11100101, 100100111, 100111001, 101001011, 101100011, 110010101, 110101001, 111000101, 111001001, 1000011011, 1000110101, 1001000111, 1001001011, 1001010011, 1010000111, 1010001101, 1010010011, 1010100011, 1010110001
Offset: 1

Author

René-Louis Clerc, May 15 2025

Keywords

Comments

Expression of the primes that are 0-successors of the preprime 11111 (= 41*271); they constitute the infinite set of secondary primes with five 1's and zeros denoted {11111} (Definitions 1, 2, 3, 4 of Clerc).

Crossrefs

Programs

  • Maple
    f:= proc(n) local R,c,i;
     sort(select(isprime, [seq(1+10^(n-1) + add(10^i,i=c), c=combinat:-choose(n-2,3))]))
    end proc:
    map(op,[seq(f(i),i=6..10)]); # Robert Israel, May 29 2025
  • PARI
    list(M) = for(i=3, M, for(j=2, i-1, for(k=1, j-1, for(r=1, k-1, my(p=10^i+10^j+10^k+10^r+1); isprime(p) && print1(p, ", ")))))
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A383918_gen(): # generator of terms
        for a in count(4):
            for b in range(3,a):
                for c in range(2,b):
                    for d in range(1,c):
                        if isprime(p:=10**a+10**b+10**c+10**d|1):
                            yield(p)
    A383918_list = list(islice(A383918_gen(),30)) # Chai Wah Wu, May 29 2025

A381257 Numbers k such that 6*k+1 divides 6^k+1.

Original entry on oeis.org

0, 1, 6, 30, 58, 70, 73, 90, 101, 105, 121, 125, 146, 153, 166, 170, 181, 182, 185, 210, 233, 241, 242, 266, 282, 290, 322, 373, 381, 385, 390, 397, 441, 445, 446, 450, 453, 530, 557, 562, 585, 593, 601, 602, 605, 606, 621, 646, 653, 670, 685, 710, 726, 805, 810, 817, 833, 837, 853, 866
Offset: 1

Author

René-Louis Clerc, Feb 18 2025

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).

Examples

			6*30+1 = 181 divides 6^30+1 = 221073919720733357899777.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 866], PowerMod[6, #, 6#+1]==6#&]  (* James C. McMahon, Apr 02 2025 *)
  • PARI
    isok(n) = my(m=6*n+1); Mod(6, m)^n==-1

A381256 Numbers k such that 5*k+1 divides 5^k+1.

Original entry on oeis.org

0, 1, 625, 57057, 7748433, 30850281, 111494625, 393423745, 499088601, 519341361, 1051107705, 1329416385, 1616038425, 2215448001, 2433936225, 2852972265, 3399207273, 4344683849, 4961725281, 5454760185, 5485530369, 6578054145, 6678031745, 7701979761, 7807302825
Offset: 1

Author

René-Louis Clerc, Feb 18 2025

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).

Examples

			5*625+1 = 3126 divides 5^625+1.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • PARI
    isok(n) = my(m=5*n+1); Mod(5, m)^n==-1

A381258 Numbers k such that 7*k+1 divides 7^k+1.

Original entry on oeis.org

0, 1, 135, 5733, 11229, 42705, 50445, 117649, 131365, 168093, 636405, 699825, 1269495, 2528155, 4226175, 6176709, 6502545, 9365265, 9551115, 13227021, 14464485, 14912625, 20859435, 26903605, 28251265, 30589905, 32660901, 37597329, 41506875, 42766465, 55452075, 56192535, 111898605
Offset: 1

Author

René-Louis Clerc, Feb 18 2025

Keywords

Comments

The numbers are called Curzon numbers by Tattersall (p. 85, exercise 43).

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Second Edition, Cambridge University Press, 2005, p. 85.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,10^7],PowerMod[7,#,7#+1]==7#&] (* James C. McMahon, Mar 05 2025 *)
  • PARI
    isok(n) = my(m=7*n+1); Mod(7, m)^n==-1

A379767 Triangle read by rows: row n lists numbers which are the n-th powers of their digit sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 81, 0, 1, 512, 4913, 5832, 17576, 19683, 0, 1, 2401, 234256, 390625, 614656, 1679616, 0, 1, 17210368, 52521875, 60466176, 205962976, 0, 1, 34012224, 8303765625, 24794911296, 68719476736, 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432
Offset: 1

Author

René-Louis Clerc, Jan 02 2025

Keywords

Comments

Each row begins with 0, 1. Solutions can have no more than R(n) digits, since (R(n)*9)^n < 10^R(n), hence, for each n, there are a finite number of solutions (Property 1 and table 1 of Clerc).

Examples

			Triangle begins:
  1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  2 | 0, 1, 81;
  3 | 0, 1, 512, 4913, 5832, 17576, 19683;
  4 | 0, 1, 2401, 234256, 390625, 614656, 1679616;
  5 | 0, 1, 17210368, 52521875, 60466176, 205962976;
  6 | 0, 1, 34012224, 8303765625, 24794911296, 68719476736;
  7 | 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432;
  8 | 0, 1, 20047612231936, 72301961339136, 248155780267521;
  9 | 0, 1, 3904305912313344, 45848500718449031, 150094635296999121;
  ...
		

Crossrefs

Rows 3..6 are A061209, A061210, A254000, A375343.
Row lengths are 1 + A046019(n).
Cf. A001014, A007953, A061211 (largest terms), A133509.
Cf. A152147.

Programs

  • PARI
    R(n) = for(j=2,oo, if((j*9)^n <10^j, return(j)));
    row(n) = my(L=List()); for (k=0, sqrtnint(10^R(n),n), if (k^n == sumdigits(k^n)^n, listput(L, k^n))); Vec(L)

A375344 First term p1 of octuplets of consecutive prime numbers pi with given successive gaps pi-p1, i=2, ...,8 (6, 8, 18, 24, 30, 36, 38).

Original entry on oeis.org

233, 2721413, 154670903, 200559053, 232777673, 273788363, 299267663, 459117353, 527326403, 1015923113, 1563572243, 1688692763, 2426018723, 2918492243, 3743134523, 4445599853, 4458163943, 4697619593, 5493835013, 5546977823, 5930389313, 6131660663, 6470661143, 7598587943
Offset: 1

Author

René-Louis Clerc, Aug 12 2024

Keywords

Comments

The choice of successive gaps (6, 8, 18, 24, 30, 36, 38) is such that the sum of the eight prime numbers beginning with 233 is 2024. The next year being the sum of analogous octuplet is 21771464 (21772nd millenium).

Examples

			233, 239, 241, 251, 257, 263, 269, 271 (sum = 2024).
2721413, 2721419, 2721421, 2721431, 2721437, 2721443, 2721449, 2721451 (sum = 21771464).
		

Programs

  • PARI
    uplet(p)= {n=0;for(i=p, p+38, if(isprime(i), n+=1));n}
    octo(m)={for(p=3,p=10^m,if(isprime(p) && isprime(p+6) && isprime(p+8) && isprime(p+18) && isprime(p+24) && isprime(p+30) && isprime(p+36) && isprime(p+38) && uplet(p)==8,print1(p,", ")))}
    listocto(p1)=print1(p1,", ", p1+6,", ", p1+8,", ", p1+18,", ", p1+24,", ", p1+30,", ", p1+36", ", p1+38)

A375343 Numbers which are the sixth powers of their digit sum.

Original entry on oeis.org

0, 1, 34012224, 8303765625, 24794911296, 68719476736
Offset: 1

Author

René-Louis Clerc, Aug 12 2024

Keywords

Comments

Solutions can have no more than 13 digits, since (13*9)^6 < 10^13.

Examples

			68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^6 = 64^6.
		

Programs

  • PARI
    for (k=0, sqrtnint(10^13,6), if (k^6 == sumdigits(k^6)^6, print1(k^6, ", ")); )

Formula

{ k : k = A007953(k)^6}.
a(n) = A055577(n)^6. - Alois P. Heinz, Aug 24 2024

A371338 Numbers k>0 such that k = |(product of nonzero digits of k^2) - (sum of digits of k^2)|.

Original entry on oeis.org

161, 198, 1701, 604755, 629810, 4354506, 100018736, 411505847, 14869757951891, 2239397044538572646, 40766979086355529727820, 6289762487609138872319999999757
Offset: 1

Author

René-Louis Clerc, Mar 19 2024

Keywords

Comments

Most often P-S is strictly positive but to always have an application of N* in N* we prefer to use |P-S| (cf. Clerc).

Examples

			1701^2 = 2893401, |(2*8*9*3*4*1) - (2+8+9+3+4+1)| = 1728 - 27 = 1701.
		

Crossrefs

Programs

  • PARI
    SmP(k,r)=my(d=select(x->(x>0),digits(k^r))); abs(vecsum(d)- vecprod(d)) == k;
     resuSmP(p,r)={for(k=1,10^p,if(SmP(k,r)==1, print1(k,";")))}

Extensions

a(9)-a(12) from Chai Wah Wu, Apr 20 2024