A381290 Number of subsets of 6 integers between 1 and n such that their sum is 1 modulo n.
1, 4, 9, 22, 42, 78, 132, 217, 333, 504, 728, 1035, 1428, 1944, 2583, 3399, 4389, 5616, 7084, 8866, 10962, 13468, 16380, 19806, 23751, 28336, 33561, 39576, 46376, 54126, 62832, 72675, 83655, 95988, 109668, 124929, 141778, 160468, 180999
Offset: 7
Examples
For n=7, a(7)=1 since the set {0,1,2,3,4,5} is the unique order 6 subset of Z/7Z with sum equal to 1 mod 7.
Links
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,-1,1,4,-3,-3,4,1,-1,-3,1,2,-1).
Formula
G.f.: x^7*(1 + 2*x + 3*x^3 + 2*x^4 + 2*x^5 + x^6 + x^7)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)*(1 - x^6)).
Comments