A381319 Order of linear recurrence with constant coefficients of solutions of k satisfying k^(n-1) == 1 (mod n^2) for a given n.
2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 5, 2, 17, 2, 19, 2, 5, 2, 23, 2, 5, 2, 3, 4, 29, 2, 31, 2, 5, 2, 5, 2, 37, 2, 5, 2, 41, 2, 43, 2, 9, 2, 47, 2, 7, 2, 5, 4, 53, 2, 5, 2, 5, 2, 59, 2, 61, 2, 5, 2, 17, 6, 67, 2, 5, 4, 71, 2, 73, 2, 5, 4, 5, 2, 79, 2, 3, 2, 83, 2, 17, 2, 5, 2, 89
Offset: 2
Keywords
Examples
For n=5 the congruence equation k^4 ==1 mod (5^2) has solutions of k (A056021) which satisfy k(m) = k(m-1) + k(m-4) - k(m-5), the order being 5, a(5)=5. For n=9, k^8==1 mod (9^2) has solutions of k with recurrence k(m) = k(m-1) + k(m-2) - k(m-3), order 3, a(9)=3.
Links
- Paolo Xausa, Table of n, a(n) for n = 2..10000
Crossrefs
Programs
-
Mathematica
A381319[n_] := Times @@ GCD[FactorInteger[n][[All, 1]] - 1, n - 1] + 1; Array[A381319, 100, 2] (* Paolo Xausa, Mar 05 2025 *)
Formula
a(n) = 1 + A063994(n).
a(p) = p if p is prime.
Comments