cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A056020 Numbers that are congruent to +-1 mod 9.

Original entry on oeis.org

1, 8, 10, 17, 19, 26, 28, 35, 37, 44, 46, 53, 55, 62, 64, 71, 73, 80, 82, 89, 91, 98, 100, 107, 109, 116, 118, 125, 127, 134, 136, 143, 145, 152, 154, 161, 163, 170, 172, 179, 181, 188, 190, 197, 199, 206, 208, 215, 217, 224, 226, 233, 235, 242, 244, 251, 253
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Or, numbers k such that k^2 == 1 (mod 9).
Or, numbers k such that the iterative cycle j -> sum of digits of j^2 when started at k contains a 1. E.g., 8 -> 6+4 = 10 -> 1+0+0 = 1 and 17 -> 2+8+9 = 19 -> 3+6+1 = 10 -> 1+0+0 = 1. - Asher Auel, May 17 2001

Crossrefs

Cf. A007953, A047522 (n=1 or 7 mod 8), A090771 (n=1 or 9 mod 10).
Cf. A129805 (primes), A195042 (partial sums).
Cf. A381319 (general case mod n^2).

Programs

  • Haskell
    a056020 n = a056020_list !! (n-1)
    a05602_list = 1 : 8 : map (+ 9) a056020_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Mathematica
    Select[ Range[ 300 ], PowerMod[ #, 2, 3^2 ]==1& ]
    (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 8, 10}, 67] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    a(n)=9*(n>>1)+if(n%2,1,-1) \\ Charles R Greathouse IV, Jun 29 2011
    
  • PARI
    for(n=1,40,print1(9*n-8,", ",9*n-1,", ")) \\ Charles R Greathouse IV, Jun 29 2011
    

Formula

a(1) = 1; a(n) = 9(n-1) - a(n-1). - Rolf Pleisch, Jan 31 2008 [Offset corrected by Jon E. Schoenfield, Dec 22 2008]
From R. J. Mathar, Feb 10 2008: (Start)
O.g.f.: 1 + 5/(4(x+1)) + 27/(4(-1+x)) + 9/(2(-1+x)^2).
a(n+1) - a(n) = A010697(n). (End)
a(n) = (9*A132355(n) + 1)^(1/2). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = a(n-2) + 9, for n > 2.
a(n) = 9*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), n > 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/9)*cot(Pi/9) = A019676 * A019968. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((18*x - 9)*exp(x) + 5*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/9) (A332437).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/9)*cosec(Pi/9). (End)
From Mike Sheppard, Feb 18 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) ~ (3^2/2)*n. (End)

A056021 Numbers k such that k^4 == 1 (mod 5^2).

Original entry on oeis.org

1, 7, 18, 24, 26, 32, 43, 49, 51, 57, 68, 74, 76, 82, 93, 99, 101, 107, 118, 124, 126, 132, 143, 149, 151, 157, 168, 174, 176, 182, 193, 199, 201, 207, 218, 224, 226, 232, 243, 249, 251, 257, 268, 274, 276, 282, 293, 299, 301, 307, 318, 324, 326, 332, 343, 349
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Numbers congruent to {1, 7, 18, 24} mod 25.
These terms (apart from 1) are tetration bases characterized by a constant convergence speed strictly greater than 1 (see A317905). - Marco RipĂ , Jan 25 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 400 ], PowerMod[ #, 4, 25 ]==1& ]
    (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 7, 18, 24, 26}, 100] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    a(n) = (-25 - (-1)^n + (9-9*I)*(-I)^n + (9+9*I)*I^n + 50*n) / 8 \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(x^2+3*x+1)^2/((1+x)*(x^2+1)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015
    
  • PARI
    for(n=0, 1e3, if(n^4 % 5^2 == 1, print1(n", "))) \\ Altug Alkan, Oct 16 2015
    
  • PARI
    isok(k) = Mod(k, 25)^4 == 1; \\ Michel Marcus, Jun 30 2021

Formula

G.f.: x*(x^2+3*x+1)^2 / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011
a(n) = (-25 - (-1)^n + (9-9*i)*(-i)^n + (9+9*i)*i^n + 50*n) / 8, where i = sqrt(-1). - Colin Barker, Oct 16 2015
From Mike Sheppard, Feb 18 2025: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5).
a(n) ~ (5^2/4)*n. (End)

A056022 Numbers k such that k^6 == 1 (mod 7^2).

Original entry on oeis.org

1, 18, 19, 30, 31, 48, 50, 67, 68, 79, 80, 97, 99, 116, 117, 128, 129, 146, 148, 165, 166, 177, 178, 195, 197, 214, 215, 226, 227, 244, 246, 263, 264, 275, 276, 293, 295, 312, 313, 324, 325, 342, 344, 361, 362, 373, 374, 391, 393, 410, 411, 422, 423, 440, 442
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    Select[ Range[ 500 ], PowerMod[ #, 6, 49 ]==1& ]
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 18, 19, 30, 31, 48, 50}, 61] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    isok(k) = Mod(k, 49)^6 == 1; \\ Michel Marcus, Jun 30 2021

Formula

From Mike Sheppard, Feb 18 2025 : (Start)
a(n) = a(n-1) + a(n-6) - a(n-7).
a(n) = a(n-6) + 7^2.
a(n) ~ (7^2/6)*n.
G.f.: (1 + x*(17 + x + 11*x^2 + x^3 + 17*x^4 + x^5))/(1 - x - x^6 + x^7). (End)

A056024 Numbers k such that k^10 == 1 (mod 11^2).

Original entry on oeis.org

1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 122, 124, 130, 148, 161, 202, 215, 233, 239, 241, 243, 245, 251, 269, 282, 323, 336, 354, 360, 362, 364, 366, 372, 390, 403, 444, 457, 475, 481, 483, 485, 487, 493, 511, 524, 565, 578, 596, 602, 604, 606, 608, 614, 632
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    Select[ Range[ 800 ], PowerMod[ #, 10, 121 ]==1& ]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 122}, 65] (* Mike Sheppard, Feb 19 2025 *)

Formula

From Mike Sheppard, Feb 19 2025: (Start)
a(n) = a(n-1) + a(n-10) - a(n-11).
a(n) = a(n-10) + 11^2.
a(n) ~ (11^2/10)*n. (End)

A056025 Numbers k such that k^12 == 1 (mod 13^2).

Original entry on oeis.org

1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 170, 188, 191, 192, 239, 249, 258, 268, 315, 316, 319, 337, 339, 357, 360, 361, 408, 418, 427, 437, 484, 485, 488, 506, 508, 526, 529, 530, 577, 587, 596, 606, 653, 654, 657, 675, 677, 695, 698, 699, 746
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

From 19 to 168 inclusive, these are the numbers that 'fool' the strong pseudoprimality test described in Wilf (1986) in regard to determining whether 169 is composite. - Alonso del Arte, Feb 05 2012

References

  • Herbert S. Wilf, Algorithms and Complexity, Englewood Cliffs, New Jersey: Prentice-Hall, 1986, pp. 158-160.

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    Select[ Range[ 800 ], PowerMod[ #, 12, 169 ]==1& ]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 170}, 56] (* Mike Sheppard, Feb 19 2025 *)
  • PARI
    is(k)=Mod(k,169)^12==1 \\ Charles R Greathouse IV, Feb 07 2018

Formula

From Mike Sheppard, Feb 19 2025 : (Start)
a(n) = a(n-1) + a(n-12) - a(n-13).
a(n) = a(n-12) + 13^2.
a(n) ~ (13^2/12)*n. (End)

Extensions

Definition corrected by T. D. Noe, Aug 23 2008

A056028 Numbers k such that k^18 == 1 (mod 19^2).

Original entry on oeis.org

1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360, 362, 389, 415, 423, 429, 430, 460, 477, 488, 595, 606, 623, 653, 654, 660, 668, 694, 721, 723, 750, 776, 784, 790, 791, 821, 838, 849, 956, 967, 984, 1014, 1015, 1021, 1029
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    x=19; Select[ Range[ 1250 ], PowerMod[ #, x-1, x^2 ]==1& ]
  • PARI
    isok(n) = Mod(n, 19^2)^18 == 1; \\ Michel Marcus, Feb 12 2017
    
  • PARI
    Vec(x*(x^18 +27*x^17 +26*x^16 +8*x^15 +6*x^14 +x^13 +30*x^12 +17*x^11 +11*x^10 +107*x^9 +11*x^8 +17*x^7 +30*x^6 +x^5 +6*x^4 +8*x^3 +26*x^2 +27*x +1) / (x^19 -x^18 -x +1) + O(x^100)) \\ Colin Barker, Feb 12 2017

Formula

a(n) = a(n-1) + a(n-18) - a(n-19). - Matthew House, Feb 12 2017
G.f.: x*(x^18 +27*x^17 +26*x^16 +8*x^15 +6*x^14 +x^13 +30*x^12 +17*x^11 +11*x^10 +107*x^9 +11*x^8 +17*x^7 +30*x^6 +x^5 +6*x^4 +8*x^3 +26*x^2 +27*x +1) / (x^19 -x^18 -x +1). - Colin Barker, Feb 12 2017
From Mike Sheppard, Feb 20 2025: (Start)
a(n) = a(n-18) + 19^2.
a(n) ~ (19^2/18)*n. (End)

A056031 Numbers k such that k^22 == 1 (mod 23^2).

Original entry on oeis.org

1, 28, 42, 63, 118, 130, 170, 177, 195, 255, 263, 266, 274, 334, 352, 359, 399, 411, 466, 487, 501, 528, 530, 557, 571, 592, 647, 659, 699, 706, 724, 784, 792, 795, 803, 863, 881, 888, 928, 940, 995, 1016, 1030, 1057, 1059, 1086, 1100, 1121, 1176, 1188
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    x=23; Select[ Range[ 2000 ], PowerMod[ #, x-1, x^2 ]==1& ]

Formula

From Mike Sheppard, Feb 20 2025 : (Start)
a(n) = a(n-1) + a(n-22) - a(n-23).
a(n) = a(n-22) + 23^2.
a(n) ~ (23^2/22)*n. (End)

A056034 Numbers k such that k^28 == 1 (mod 29^2).

Original entry on oeis.org

1, 14, 41, 60, 63, 137, 190, 196, 221, 236, 267, 270, 374, 416, 425, 467, 571, 574, 605, 620, 645, 651, 704, 778, 781, 800, 827, 840, 842, 855, 882, 901, 904, 978, 1031, 1037, 1062, 1077, 1108, 1111, 1215, 1257, 1266, 1308, 1412, 1415, 1446, 1461, 1486, 1492
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Crossrefs

Cf. A381319 (general case mod n^2).

Programs

  • Mathematica
    x=29; Select[ Range[ 2000 ], PowerMod[ #, x-1, x^2 ]==1& ]
  • PARI
    isok(k) = Mod(k, 29^2)^28 == 1; \\ Michel Marcus, Apr 10 2025

Formula

From Mike Sheppard, Feb 20 2025 : (Start)
a(n) = a(n-1) + a(n-28) - a(n-29).
a(n) = a(n-28) + 29^2.
a(n) ~ (29^2/28)*n. (End)
Showing 1-8 of 8 results.