A061908 Duplicate of A056020.
1, 8, 10, 17, 19, 26, 28, 35, 37, 44, 46, 53, 55, 62, 64, 71, 73, 80, 82, 89, 91, 98, 100
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
Filtered([1..150],n->n mod 6=1 or n mod 6=5); # Muniru A Asiru, Dec 19 2018
a007310 n = a007310_list !! (n-1) a007310_list = 1 : 5 : map (+ 6) a007310_list -- Reinhard Zumkeller, Jan 07 2012
[n: n in [1..250] | n mod 6 in [1, 5]]; // Vincenzo Librandi, Feb 12 2016
seq(seq(6*i+j,j=[1,5]),i=0..100); # Robert Israel, Sep 08 2014
Select[Range[200], MemberQ[{1, 5}, Mod[#, 6]] &] (* Harvey P. Dale, Aug 27 2013 *) a[n_] := (6 n + (-1)^n - 3)/2; a[rem156, 60] (* Robert G. Wilson v, May 26 2014 from a suggestion by N. J. A. Sloane *) Flatten[Table[6n + {1, 5}, {n, 0, 24}]] (* Alonso del Arte, Feb 06 2016 *) Table[2*Floor[3*n/2] - 1, {n, 1000}] (* Mikk Heidemaa, Feb 11 2016 *)
isA007310(n) = gcd(n,6)==1 \\ Michael B. Porter, Oct 09 2009
A007310(n)=n\2*6-(-1)^n \\ M. F. Hasler, Oct 31 2014
\\ given an element from the sequence, find the next term in the sequence. nxt(n) = n + 9/2 - (n%6)/2 \\ David A. Corneth, Nov 01 2016
def A007310(n): return (n+(n>>1)<<1)-1 # Chai Wah Wu, Oct 10 2023
[i for i in range(150) if gcd(6,i) == 1] # Zerinvary Lajos, Apr 21 2009
a047209 = (flip div 2) . (subtract 2) . (* 5) a047209_list = 1 : 4 : (map (+ 5) a047209_list) -- Reinhard Zumkeller, Jul 19 2013, Jan 05 2011
seq(floor(5*k/2)-1, k=1..100); # Wesley Ivan Hurt, Sep 27 2013
Select[Range[0, 200], MemberQ[{1, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) LinearRecurrence[{1,1,-1},{1,4,6},70] (* Harvey P. Dale, Jul 19 2024 *)
a(n)=(10*n+(-1)^n-5)/4 \\ Charles R Greathouse IV, Sep 24 2015
a047522 n = a047522_list !! (n-1) a047522_list = 1 : 7 : map (+ 8) a047522_list -- Reinhard Zumkeller, Jan 07 2012
Select[Range[1, 191, 2], JacobiSymbol[2, # ]==1&]
a(n)=4*n-2+(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
a090771 n = a090771_list !! (n-1) a090771_list = 1 : 9 : map (+ 10) a090771_list -- Reinhard Zumkeller, Jan 07 2012
Flatten[Table[10n - {9, 1}, {n, 30}]] (* Alonso del Arte, Sep 02 2014 *) LinearRecurrence[{1,1,-1},{1,9,11},60] (* Harvey P. Dale, Jul 05 2020 *)
a(n)=n\2*10-(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
a047336 n = a047336_list !! (n-1) a047336_list = 1 : 6 : map (+ 7) a047336_list -- Reinhard Zumkeller, Jan 07 2012
[n: n in [1..210]| n mod 7 in {1,6}]; // Bruno Berselli, Feb 22 2011
Rest[Flatten[Table[{7i-1,7i+1},{i,0,40}]]] (* Harvey P. Dale, Nov 20 2010 *)
a(n)=n\2*7-(-1)^n \\ Charles R Greathouse IV, May 02 2016
a113801 n = a113801_list !! (n-1) a113801_list = 1 : 13 : map (+ 14) a113801_list -- Reinhard Zumkeller, Jan 07 2012
LinearRecurrence[{1,1,-1},{1,13,15},60] (* or *) Select[Range[500], MemberQ[{1,13},Mod[#,14]]&] (* Harvey P. Dale, May 11 2011 *)
a(n)=n\2*14-(-1)^n \\ Charles R Greathouse IV, Sep 15 2015
&cat[[7*n, 2*n+1]: n in [0..40]]; // Vincenzo Librandi, Sep 27 2011
Table[If[EvenQ[n], 7(n/2), n], {n, 0, 61}] (* Alonso del Arte, Sep 14 2011 *) With[{nn=40},Riffle[7*Range[0,nn],Range[1,2nn,2]]] (* Harvey P. Dale, Aug 01 2019 *)
a(n)=(5*(-1)^n+9)*n/4 \\ Charles R Greathouse IV, Oct 07 2015
a091998 n = a091998_list !! (n-1) a091998_list = 1 : 11 : map (+ 12) a091998_list -- Reinhard Zumkeller, Jan 07 2012
[ n: n in [1..350] | n mod 12 eq 1 or n mod 12 eq 11 ];
LinearRecurrence[{1,1,-1},{1,11,13},100] (* Harvey P. Dale, Jul 26 2017 *)
is(n)=n=n%12;n==11 || n==1 \\ Charles R Greathouse IV, Jul 02 2013
a175885 n = a175885_list !! (n-1) a175885_list = 1 : 10 : map (+ 11) a175885_list -- Reinhard Zumkeller, Jan 07 2012
[(22*n+7*(-1)^n-11)/4: n in [1..60]]; // Vincenzo Librandi, Sep 19 2011
Rest[Flatten[{#-1,#+1}&/@(11 Range[0,50])]] (* Harvey P. Dale, Nov 05 2010 *)
a(n)=n%2*9 + 1 \\ Charles R Greathouse IV, Aug 01 2016
Comments