A056022
Numbers k such that k^6 == 1 (mod 7^2).
Original entry on oeis.org
1, 18, 19, 30, 31, 48, 50, 67, 68, 79, 80, 97, 99, 116, 117, 128, 129, 146, 148, 165, 166, 177, 178, 195, 197, 214, 215, 226, 227, 244, 246, 263, 264, 275, 276, 293, 295, 312, 313, 324, 325, 342, 344, 361, 362, 373, 374, 391, 393, 410, 411, 422, 423, 440, 442
Offset: 1
Cf.
A381319 (general case mod n^2).
-
Select[ Range[ 500 ], PowerMod[ #, 6, 49 ]==1& ]
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 18, 19, 30, 31, 48, 50}, 61] (* Mike Sheppard, Feb 18 2025 *)
-
isok(k) = Mod(k, 49)^6 == 1; \\ Michel Marcus, Jun 30 2021
A056024
Numbers k such that k^10 == 1 (mod 11^2).
Original entry on oeis.org
1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 122, 124, 130, 148, 161, 202, 215, 233, 239, 241, 243, 245, 251, 269, 282, 323, 336, 354, 360, 362, 364, 366, 372, 390, 403, 444, 457, 475, 481, 483, 485, 487, 493, 511, 524, 565, 578, 596, 602, 604, 606, 608, 614, 632
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Cf.
A381319 (general case mod n^2).
-
Select[ Range[ 800 ], PowerMod[ #, 10, 121 ]==1& ]
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 122}, 65] (* Mike Sheppard, Feb 19 2025 *)
A056025
Numbers k such that k^12 == 1 (mod 13^2).
Original entry on oeis.org
1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 170, 188, 191, 192, 239, 249, 258, 268, 315, 316, 319, 337, 339, 357, 360, 361, 408, 418, 427, 437, 484, 485, 488, 506, 508, 526, 529, 530, 577, 587, 596, 606, 653, 654, 657, 675, 677, 695, 698, 699, 746
Offset: 1
- Herbert S. Wilf, Algorithms and Complexity, Englewood Cliffs, New Jersey: Prentice-Hall, 1986, pp. 158-160.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
Cf.
A381319 (general case mod n^2).
-
Select[ Range[ 800 ], PowerMod[ #, 12, 169 ]==1& ]
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 170}, 56] (* Mike Sheppard, Feb 19 2025 *)
-
is(k)=Mod(k,169)^12==1 \\ Charles R Greathouse IV, Feb 07 2018
Definition corrected by
T. D. Noe, Aug 23 2008
A056028
Numbers k such that k^18 == 1 (mod 19^2).
Original entry on oeis.org
1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360, 362, 389, 415, 423, 429, 430, 460, 477, 488, 595, 606, 623, 653, 654, 660, 668, 694, 721, 723, 750, 776, 784, 790, 791, 821, 838, 849, 956, 967, 984, 1014, 1015, 1021, 1029
Offset: 1
- Matthew House, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Cf.
A381319 (general case mod n^2).
-
x=19; Select[ Range[ 1250 ], PowerMod[ #, x-1, x^2 ]==1& ]
-
isok(n) = Mod(n, 19^2)^18 == 1; \\ Michel Marcus, Feb 12 2017
-
Vec(x*(x^18 +27*x^17 +26*x^16 +8*x^15 +6*x^14 +x^13 +30*x^12 +17*x^11 +11*x^10 +107*x^9 +11*x^8 +17*x^7 +30*x^6 +x^5 +6*x^4 +8*x^3 +26*x^2 +27*x +1) / (x^19 -x^18 -x +1) + O(x^100)) \\ Colin Barker, Feb 12 2017
A056027
Numbers k such that k^16 == 1 (mod 17^2).
Original entry on oeis.org
1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288, 290, 327, 329, 354, 364, 399, 420, 423, 444, 447, 468, 503, 513, 538, 540, 577, 579, 616, 618, 643, 653, 688, 709, 712, 733, 736, 757, 792, 802, 827, 829, 866, 868, 905, 907, 932, 942
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
-
x=17; Select[ Range[ 1000 ], PowerMod[ #, x-1, x^2 ]==1& ]
(* or *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288, 290}, 55] (* Mike Sheppard, Feb 17 2025 *)
A056031
Numbers k such that k^22 == 1 (mod 23^2).
Original entry on oeis.org
1, 28, 42, 63, 118, 130, 170, 177, 195, 255, 263, 266, 274, 334, 352, 359, 399, 411, 466, 487, 501, 528, 530, 557, 571, 592, 647, 659, 699, 706, 724, 784, 792, 795, 803, 863, 881, 888, 928, 940, 995, 1016, 1030, 1057, 1059, 1086, 1100, 1121, 1176, 1188
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Cf.
A381319 (general case mod n^2).
A056034
Numbers k such that k^28 == 1 (mod 29^2).
Original entry on oeis.org
1, 14, 41, 60, 63, 137, 190, 196, 221, 236, 267, 270, 374, 416, 425, 467, 571, 574, 605, 620, 645, 651, 704, 778, 781, 800, 827, 840, 842, 855, 882, 901, 904, 978, 1031, 1037, 1062, 1077, 1108, 1111, 1215, 1257, 1266, 1308, 1412, 1415, 1446, 1461, 1486, 1492
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Cf.
A381319 (general case mod n^2).
-
x=29; Select[ Range[ 2000 ], PowerMod[ #, x-1, x^2 ]==1& ]
-
isok(k) = Mod(k, 29^2)^28 == 1; \\ Michel Marcus, Apr 10 2025
A056035
Numbers k such that k^30 == 1 (mod 31^2).
Original entry on oeis.org
1, 115, 117, 145, 229, 235, 333, 338, 374, 388, 414, 430, 439, 440, 448, 513, 521, 522, 531, 547, 573, 587, 623, 628, 726, 732, 816, 844, 846, 960, 962, 1076, 1078, 1106, 1190, 1196, 1294, 1299, 1335, 1349, 1375, 1391, 1400, 1401, 1409, 1474, 1482, 1483
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
A143548
Irregular triangle of numbers k < p^2 such that p^2 divides k^(p-1)-1, with p=prime(n).
Original entry on oeis.org
1, 1, 8, 1, 7, 18, 24, 1, 18, 19, 30, 31, 48, 1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288, 1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360
Offset: 1
(2) 1,
(3) 1, 8,
(5) 1, 7, 18, 24,
(7) 1, 18, 19, 30, 31, 48,
(11) 1, 3, 9, 27, 40, 81, 94, 112, 118, 120,
(13) 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168,
(17) 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288,
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2005
Cf.
A039678,
A056020,
A056021,
A056022,
A056024,
A056025,
A056027,
A056028,
A056031,
A056034,
A056035,
A096082,
A138416.
-
f:= proc(n) local p,j,x;
p:= ithprime(n);
x:= numtheory:-primroot(p);
op(sort([seq(x^(i*p) mod p^2, i=0..p-2)]))
end proc:
map(f, [$1..20]); # Robert Israel, Sep 27 2016
-
Flatten[Table[p=Prime[n]; Select[Range[p^2], PowerMod[ #,p-1,p^2]==1&], {n,50}]] (* T. D. Noe, Aug 24 2008 *)
Flatten[Table[p=Prime[n]; r=PrimitiveRoot[p]; b=PowerMod[r,p,p^2]; Sort[NestList[Mod[b*#,p^2]&,1,p-2]], {n,50}]] (* Faster version from T. D. Noe, Aug 26 2008 *)
A056026
Numbers k such that k^14 == 1 (mod 15^2).
Original entry on oeis.org
1, 26, 199, 224, 226, 251, 424, 449, 451, 476, 649, 674, 676, 701, 874, 899, 901, 926, 1099, 1124, 1126, 1151, 1324, 1349, 1351, 1376, 1549, 1574, 1576, 1601, 1774, 1799, 1801, 1826, 1999, 2024, 2026, 2051, 2224, 2249, 2251, 2276, 2449, 2474, 2476, 2501
Offset: 1
-
Select[ Range[ 3000 ], PowerMod[ #, 14, 225 ]==1& ]
LinearRecurrence[{1,0,0,1,-1},{1,26,199,224,226},50] (* Harvey P. Dale, Nov 11 2011 *)
-
a(n) = (-225 - 125*(-1)^n + (171-171*I)*(-I)^n + (171+171*I)*I^n + 450*n)/8 \\ Colin Barker, Oct 16 2015
-
Vec(x*(1+25*x+173*x^2+25*x^3+x^4)/((1+x)*(1+x^2)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015
Showing 1-10 of 11 results.
Comments