A381356 Limit of rows in irregular triangle A381587.
1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 5, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 5, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 5
Offset: 1
Keywords
Examples
Row n+1 of irregular triangle A381587 equals the run lengths of the first n rows of the triangle (flattened) when read in reverse order, starting with n = 1: [1]; n = 2: [1]; n = 3: [2]; n = 4: [1, 2]; n = 5: [1, 1, 1, 2]; n = 6: [1, 3, 1, 1, 1, 2]; n = 7: [1, 3, 1, 1, 1, 3, 1, 1, 1, 2]; n = 8: [1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2]; n = 9: [1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2]; n = 10: [1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2]; n = 11: [1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2]; n = 12: [1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, ...]; ... This sequence gives the limit of the rows.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..5000
Programs
-
PARI
\\ Print the limit of the rows in triangle A381587 \\ RUNS(V) Returns vector of run lengths in vector V: {RUNS(V) = my(R=[], c=1); if(#V>1, for(n=2, #V, if(V[n]==V[n-1], c=c+1, R=concat(R, c); c=1))); R=concat(R, c)} \\ REV(V) Reverses order of vector V: {REV(V) = Vec(Polrev(Ser(V)))} \\ Generates N rows as a vector A of row vectors. {N=25; A=vector(N); A[1]=[1]; A[2]=[1]; A[3]=[2]; for(n=3, #A-1, A[n+1] = concat(RUNS(REV(A[n])), A[n]); );} \\ Print the initial terms of the limit of the rows \\ (row 25 has 10797 terms of the limit of rows sequence) for(n=1,120, print1(A[25][n],", "))
Comments