A381357 Row lengths of irregular triangle A381587.
1, 1, 1, 2, 4, 6, 10, 16, 26, 42, 66, 102, 156, 238, 364, 560, 868, 1354, 2120, 3322, 5198, 8112, 12624, 19602, 30400, 47138, 73138, 113598, 176630, 274858
Offset: 1
Examples
Row n+1 of irregular triangle A381587 equals the run lengths of the first n rows of the triangle (flattened) when read in reverse order, starting with 1; 1; 2; 1,2; 1,1,1,2; 1,3,1,1,1,2; 1,3,1,1,1,3,1,1,1,2; 1,3,1,3,1,1,1,3,1,1,1,3,1,1,1,2; ... This sequence gives the row lengths [1, 1, 1, 2, 4, 6, 10, 16, ...].
Programs
-
PARI
\\ Print the row lengths of irregular triangle A381587 \\ RUNS(V) Returns vector of run lengths in vector V: {RUNS(V) = my(R=[], c=1); if(#V>1, for(n=2, #V, if(V[n]==V[n-1], c=c+1, R=concat(R, c); c=1))); R=concat(R, c)} \\ REV(V) Reverses order of vector V: {REV(V) = Vec(Polrev(Ser(V)))} \\ Generates N rows as a vector A of row vectors {N=25; A=vector(N); A[1]=[1]; A[2]=[1]; A[3]=[2]; for(n=3, #A-1, A[n+1] = concat(RUNS(REV(A[n])), A[n]); );} \\ Print the row lengths of the first N rows for(n=1, N, print1(#A[n],", "))
Comments