cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A381360 E.g.f. satisfies A(x) = exp( Integral abs(1/A(x)) dx ), where abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).

Original entry on oeis.org

1, 1, 2, 4, 12, 40, 160, 720, 3680, 20800, 129600, 880000, 6476800, 51321600, 435776000, 3946624000, 37977984000, 386949376000, 4161608704000, 47113228800000, 560034421760000, 6974121256960000, 90796614543360000, 1233482823823360000, 17455222222028800000, 256892229695692800000
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2025

Keywords

Comments

Series trisections of e.g.f. A(x) are related to Dixon elliptic functions sm(x,0) (A104133) and cm(x,0) (A104134).

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 12*x^4/4! + 40*x^5/5! + 160*x^6/6! + 720*x^7/7! + 3680*x^8/8! + 20800*x^9/9! + 129600*x^10/10! + 880000*x^11/11! + ...
RELATED SERIES.
Compare the expansion
1/A(x) = 1 - x + 2*x^3/3! - 4*x^4/4! + 40*x^6/6! - 160*x^7/7! + 3680*x^9/9! - 20800*x^10/10! + 880000*x^12/12! -+ ...
to the logarithmic derivative of A(x), which starts as
A'(x)/A(x) = 1 + x + 2*x^3/3! + 4*x^4/4! + 40*x^6/6! + 160*x^7/7! + 3680*x^9/9! + 20800*x^10/10! + 880000*x^12/12! + ...
Compare the expansion of A(x)^2,
A(x)^2 = 1 + 2*x + 6*x^2/2! + 20*x^3/3! + 80*x^4/4! + 360*x^5/5! + 1840*x^6/6! + 10400*x^7/7! + 64800*x^8/8! + ...
to the second derivative A''(x),
A''(x) = 2 + 4*x + 12*x^2/2! + 40*x^3/3! + 160*x^4/4! + 720*x^5/5! + 3680*x^6/6! + 20800*x^7/7! + 129600*x^8/8! + ...
to see that A(x)^2 = A''(x)/2.
The trisections of A(x) = T0(x) + T1(x) + T2(x) begin
T0(x) = 1 + 4*x^3/3! + 160*x^6/6! + 20800*x^9/9! + 6476800*x^12/12! + 3946624000*x^15/15! + ... + (-1)^n*A104133(n)*x^(3*n)/(3*n)! + ...
T1(x) = x + 12*x^4/4! + 720*x^7/7! + 129600*x^10/10! + 51321600*x^13/13! + 37977984000*x^16/16! + ... + A381359(n)*x^(3*n+1)/(3*n+1)! + ...
T2(x) = 2*x^2/2! + 40*x^5/5! + 3680*x^8/8! + 880000*x^11/11! + 435776000*x^14/14! + 386949376000*x^17/17! + ... + (-1)^(n+1)*A104134(n+1)*x^(3*n+2)/(3*n+2)! + ...
where T1(x)^2 = T0(x) * T2(x).
SPECIFIC VALUES.
A(t) = 2 at t = 0.539124944413127749680177459133394238743062994868860...
A(1/2) = 1.88010715382441610819143840438161395486393689452572...
A(1/3) = 1.47706812099920711982922832653100254037067385119264...
A(1/4) = 1.32525993686962199738143806921665823348728083964591...
A(1/5) = 1.24625631796359603424461055708975063363800998581855...
A(1/6) = 1.19796486760762119976757848551541621821975995313722...
A'(1/2) = 2.92023018229509494330357714872624246635412675769217...
  where A'(1/2) = sqrt((4*A(1/2)^3 - 1)/3).
A'(1/3) = 1.99083372061994133511782552227672484323798669077638...
A'(1/4) = 1.66436071755184885803761485601436009074671346271447...
A'(1/5) = 1.49916821151732137928429531008042817934393824335471...
A'(1/6) = 1.39963001300856269549100477471424098446045000735981...
A''(1/2) = 7.0696058197234933075959047886381506980186062076077...
  where A''(1/2) = 2*A(1/2)^2.
		

Crossrefs

Cf. A381361 (A(2*x)^(1/2)), A104133 (T0), A104134 (T2), A381359 (T1).

Programs

  • PARI
    {a(n) = my(A = 1 + serreverse( intformal( 1/sqrt(1 + 4*x + 4*x^2 + 4*x^3/3 + x*O(x^n)) ) )); n!*polcoef(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + Series_Reversion( Integral 1/sqrt(1 + 4*x + 4*x^2 + 4*x^3/3) dx ).
(2) A(x) = 1 + Integral sqrt( (4*A(x)^3 - 1)/3 ) dx.
(3) A(x) = 1 + x + Integral Integral 2*A(x)^2 dx dx.
(4) A(x) = exp( x + Integral Integral (2*A(x)^3 + 1)/(3*A(x)^2) dx dx ).
(5) A(x)^2 = A''(x)/2.
(6) 0 = 1 + 3*A'(x)^2 - 4*A(x)^3.
Define the series trisections of A(x) = T0 + T1 + T2 by
T0 = Sum{n>=0} a(3*n)*x^(3*n)/(3*n)!,
T1 = Sum{n>=0} a(3*n+1)*x^(3*n+1)/(3*n+1)!,
T2 = Sum{n>=0} a(3*n+2)*x^(3*n+2)/(3*n+2)!,
then these series obey the following formulas.
(7.a) T1^2 = T0 * T2.
(7.b) T0 = (T0^2 - T1*T2)^2.
(7.c) T2 = (T2^2 - T0*T1)^2.
(7.d) T1 = -(T0^2 - T1*T2) * (T2^2 - T0*T1).
(7.e) T0 = (sqrt(T2))' = -(T2^2 - T0*T1)'.
(7.f) T2 = (sqrt(T0))' = (T0^2 - T1*T2)'.
(7.g) T0^(3/2) = 1 + T2^(3/2).
(7.h) T0^3 + T1^3 + T2^3 = 1 + 3*T0*T1*T2.
(7.i) T1' = sqrt(1 + 4*T1^3) = T0^3 - T2^3.
(7.j) T0' = T0 * (sqrt(1 + 4*T1^3) - 1)/T1.
(7.k) T2' = T2 * (sqrt(1 + 4*T1^3) + 1)/T1.
(8.a) T1 = Series_Reversion( Integral 1/(1 + 4*x^3)^(1/2) dx ).
(8.b) T2 = Series_Reversion( Integral 1/(1 + x^3)^(2/3) dx )^2.
(8.c) T0 = d/dx Series_Reversion( Integral 1/(1 + x^3)^(2/3) dx ).
(8.d) T0 = exp( Integral (sqrt(1 + 4*T1^3) - 1)/T1 dx ).
(9.a) A(x) = 1/(1 - Integral T0 - T2 dx).
(9.b) A(x) = exp( x + Integral Integral T0 + T2 dx dx ).
(10.a) T0 = ((A'(x) - 1)/A(x))'/2.
(10.b) T1 = A(x) - (A'(x)/A(x))'.
(10.c) T2 = ((A'(x) + 1)/A(x))'/2.
(11.a) T0 = A(x)/3 + (1 + 3*A'(x))/(6*A(x)^2).
(11.b) T1 = A(x)/3 - 1/(3*A(x)^2).
(11.c) T2 = A(x)/3 + (1 - 3*A'(x))/(6*A(x)^2).
(12.a) T1'' = 6*T1^2.
(12.b) T0'' = 2*(T2^2 + 2*T0*T1).
(12.c) T2'' = 2*(T0^2 + 2*T1*T2).
Showing 1-1 of 1 results.