cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381374 Little Hankel transform of A317614: a(n) = A317614(n+1)^2 - A317614(n)*A317614(n+2).

Original entry on oeis.org

1, 1, 97, 49, 769, 289, 2977, 961, 8161, 2401, 18241, 5041, 35617, 9409, 63169, 16129, 104257, 25921, 162721, 39601, 242881, 58081, 349537, 82369, 487969, 113569, 663937, 152881, 883681, 201601, 1153921, 261121, 1481857, 332929, 1875169, 418609, 2342017, 519841, 2891041
Offset: 1

Views

Author

Stefano Spezia, Feb 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{1,97,49,769,289,2977,961,8161,2401,18241},38]

Formula

a(n) = (10 + 6*(-1)^n + 4*n*(n + 2)*(3*(n + 1)^2 + (-1)^n*(2*n^2 + 4*n + 5)))/16.
a(n) = 5*a(n-2) - 10*a(n-4) + 10*a(n-6) - 5*a(n-8) + a(n-10) for n > 10.
G.f.: (1 + x + 92*x^2 + 44*x^3 + 294*x^4 + 54*x^5 + 92*x^6 - 4*x^7 + x^8 + x^9)/(1 - x^2)^5.
E.g.f.: ((4 + 3*x + 123*x^2 + 10*x^3 + 5*x^4)*cosh(x) + (1 + 69*x + 21*x^2 + 50*x^3 + x^4)*sinh(x))/4.
a(2*n) = A239607(n).