A381449
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x * cosh(x))^2 ).
Original entry on oeis.org
1, 2, 10, 90, 1224, 22450, 517920, 14395514, 468414464, 17474840226, 735559614720, 34491849224602, 1783268816102400, 100786369113730898, 6182264844496971776, 409065938149354422330, 29043282491002728284160, 2202461172795524123296834, 177675452451923238962528256
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(2*n+2, k)*a185951(n, k))/(n+1);
A381448
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^3 * cosh(x*A(x)^3).
Original entry on oeis.org
1, 1, 6, 75, 1464, 39065, 1324080, 54460987, 2635269504, 146681897553, 9233067686400, 648538095601451, 50289434320131072, 4267083467872455529, 393266542856236148736, 39121731305087283953115, 4178124995723585643970560, 476806534212831941528989217, 57905078072597558361906610176
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(3*n+1, k)*a185951(n, k))/(3*n+1);
A381520
Expansion of e.g.f. ( (1/x) * Series_Reversion( x/(1 + x * cos(x))^2 ) )^(1/2).
Original entry on oeis.org
1, 1, 4, 27, 240, 2345, 17280, -226597, -21007616, -1007159823, -42976972800, -1775328986981, -72123329507328, -2843431148886887, -103621659777126400, -2971936506262036965, -6719764584265482240, 9528526268302653725537, 1192610999728818101551104
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(2*n+1, k)*I^(n-k)*a185951(n, k))/(2*n+1);
Showing 1-3 of 3 results.
Comments