A381453 Number of multisets that can be obtained by choosing a constant integer partition of each prime index of n and taking the multiset union.
1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 4, 1, 2, 3, 4, 2, 6, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 1, 4, 2, 6, 3, 6, 4, 8, 2, 2, 6, 4, 2, 6, 3, 4, 2, 6, 3, 4, 4, 5, 4, 4, 3, 8, 4, 2, 4, 6, 2, 8, 1, 8, 4, 2, 2, 6, 6, 6, 3, 4, 6, 6, 4, 6, 8, 4, 2, 5, 2, 2, 6, 4, 4, 8
Offset: 1
Keywords
Examples
The a(21) = 6 multisets are: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, {2,1,1,1,1}, {1,1,1,1,1,1}. The a(n) partitions for n = 1, 3, 7, 13, 53, 21 (G = 16): () (2) (4) (6) (G) (42) (11) (22) (33) (88) (411) (1111) (222) (4444) (222) (111111) (22222222) (2211) (1111111111111111) (21111) (111111)
Links
- Robert Price, Table of n, a(n) for n = 1..300
Crossrefs
Positions of 1 are A000079.
The strict case is A008966.
Before sorting we had A355731.
Choosing divisors instead of constant multisets gives A355733.
Multiset partitions of prime indices:
A000040 lists the primes.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[n]]]],{n,nn}]
Comments