cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381456 Decimal expansion of Product_{p prime} p^(1/(p^2-1)).

Original entry on oeis.org

1, 7, 6, 8, 1, 9, 8, 0, 7, 8, 1, 5, 3, 2, 4, 4, 9, 8, 4, 1, 3, 0, 8, 5, 3, 0, 7, 7, 2, 3, 1, 4, 9, 6, 5, 5, 2, 3, 1, 2, 9, 4, 2, 2, 8, 5, 9, 1, 2, 5, 8, 9, 7, 6, 1, 2, 5, 3, 0, 1, 4, 1, 3, 7, 5, 8, 6, 1, 0, 7, 9, 1, 4, 6, 0, 0, 0, 0, 4, 3, 0, 0, 9, 3, 0, 3, 1, 5, 7, 1, 7, 1, 0, 7, 2, 8, 5, 1, 5, 6, 1, 9, 3, 8, 0, 6, 6, 6
Offset: 1

Views

Author

Jwalin Bhatt, Feb 24 2025

Keywords

Comments

The geometric mean of the zeta distribution with parameter value 2 (A381522) approaches this constant.
In general, for parameter value `s` it approaches e^(-zeta'(s)/zeta(s)). - Jwalin Bhatt, Feb 26 2025

Examples

			1.768198078153244984130853077...
		

Crossrefs

Programs

  • Mathematica
    N[Exp[-Zeta'[2]/Zeta[2]], 120]
  • PARI
    exp(-zeta'(2)/zeta(2)) \\ Amiram Eldar, Feb 24 2025
    
  • Python
    from mpmath import zeta, diff, exp, mp
    mp.dps = 120
    const = exp(-diff(zeta, 2)/zeta(2))
    A381456 = [int(d) for d in mp.nstr(const, n=mp.dps)[:-1] if d != '.']  # Jwalin Bhatt, Apr 08 2025
  • Sage
    N(exp(-diff(zeta(s:=var('s')), s).subs(s==2) / zeta(2)), 120)
    

Formula

Equals Product_{p>=2} p^(1/(p^2-1)) where p is prime.
Equals (A^12)/(2*Pi*(e^gamma)) where A = A074962 is the Glaisher-Kinkelin constant and gamma = A001620 is the Euler-Mascheroni constant.
Equals e^(-zeta'(2)/zeta(2)).
Equals exp((Sum_{k>=2} log(k)/(k^2))*(6/(Pi^2))).
Equals (Product_{k>=2} k^(1/(k^2)))^(6/(Pi^2)).
Equals exp(A306016). - Hugo Pfoertner, Feb 24 2025