cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381469 Number of unlabeled 2,3 cacti (triangular cacti with bridges) rooted at a triangle with n triangles and every node contained in exactly one triangle.

Original entry on oeis.org

0, 1, 1, 4, 15, 66, 304, 1503, 7622, 39856, 212447, 1151614, 6324924, 35127396, 196917025, 1112776860, 6332114208, 36252066562, 208665030299, 1206819559836, 7009605269315, 40871341270810, 239144296550695, 1403719120877546, 8263431521645830, 48774908707685849
Offset: 0

Views

Author

Andrew Howroyd, Feb 25 2025

Keywords

Comments

The number of vertices is 3*n and for n > 0, the number of bridges is n-1.

Crossrefs

Cf. A287891, A380634 (unrooted).

Programs

  • PARI
    \\ here R(n) gives A287891 as g.f.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    raise(p,d) = {my(n=serprec(p,x)-1); subst(p + O(x^(n\d+1)), x, x^d)}
    R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p,2))/2)))); p}
    seq(n)={ my(p=R(n-1)); Vec(x*(p^3 + 3*p*raise(p,2) + 2*raise(p,3))/6 + O(x*x^n), -n-1) }

Formula

G.f.: x*(B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3))/6 where B(x) is the g.f. of A287891.