A381469 Number of unlabeled 2,3 cacti (triangular cacti with bridges) rooted at a triangle with n triangles and every node contained in exactly one triangle.
0, 1, 1, 4, 15, 66, 304, 1503, 7622, 39856, 212447, 1151614, 6324924, 35127396, 196917025, 1112776860, 6332114208, 36252066562, 208665030299, 1206819559836, 7009605269315, 40871341270810, 239144296550695, 1403719120877546, 8263431521645830, 48774908707685849
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Programs
-
PARI
\\ here R(n) gives A287891 as g.f. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} raise(p,d) = {my(n=serprec(p,x)-1); subst(p + O(x^(n\d+1)), x, x^d)} R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p,2))/2)))); p} seq(n)={ my(p=R(n-1)); Vec(x*(p^3 + 3*p*raise(p,2) + 2*raise(p,3))/6 + O(x*x^n), -n-1) }
Formula
G.f.: x*(B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3))/6 where B(x) is the g.f. of A287891.
Comments