cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381470 Number of simple connected graphs on n unlabeled nodes with exactly 2 non-overlapping cycles.

Original entry on oeis.org

1, 4, 21, 85, 345, 1289, 4713, 16622, 57535, 195212, 653318, 2158866, 7063333, 22906699, 73742762, 235863378, 750187968, 2374249283, 7481414941, 23482536967, 73449564533, 229016163367, 712044375528, 2208131225648, 6831543467752, 21089958138852, 64978894444220
Offset: 6

Views

Author

Andrew Howroyd, Feb 25 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Examples

			The a(6) = 1 graph is:
    o       o
   / \     / \
  o---o---o---o
.
The a(7) = 4 graphs are:
    o     o---o     o   o   o       o---o   o       o   o   o
   / \    |   |    / \ / \ / \     / \     / \     / \ /   / \
  o---o---o---o   o---o   o---o   o---o---o---o   o---o---o---o
		

Crossrefs

Column k=2 of A381467.

Programs

  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2), g=t*(t^2/(1-t) + t2*(1+t)/(1-t2))/2, g2=subst(g,x,x^2)); Vec(g^2/(1-t) + g2*(1+t)/(1-t2))/2}