A381470 Number of simple connected graphs on n unlabeled nodes with exactly 2 non-overlapping cycles.
1, 4, 21, 85, 345, 1289, 4713, 16622, 57535, 195212, 653318, 2158866, 7063333, 22906699, 73742762, 235863378, 750187968, 2374249283, 7481414941, 23482536967, 73449564533, 229016163367, 712044375528, 2208131225648, 6831543467752, 21089958138852, 64978894444220
Offset: 6
Keywords
Examples
The a(6) = 1 graph is: o o / \ / \ o---o---o---o . The a(7) = 4 graphs are: o o---o o o o o---o o o o o / \ | | / \ / \ / \ / \ / \ / \ / / \ o---o---o---o o---o o---o o---o---o---o o---o---o---o
Links
- Andrew Howroyd, Table of n, a(n) for n = 6..1000
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Programs
-
PARI
\\ TreeGf gives gf of A000081. TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2), g=t*(t^2/(1-t) + t2*(1+t)/(1-t2))/2, g2=subst(g,x,x^2)); Vec(g^2/(1-t) + g2*(1+t)/(1-t2))/2}
Comments