A381474 Array read by antidiagonals: T(m,n) is the number of minimum connected dominating sets in the grid graph P_m X P_n.
1, 2, 2, 1, 4, 1, 1, 1, 1, 1, 1, 7, 2, 7, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 16, 1, 8, 1, 1, 8, 1, 62, 62, 1, 8, 1, 1, 8, 1, 10, 126, 10, 1, 8, 1, 1, 8, 1, 48, 11, 11, 48, 1, 8, 1, 1, 8, 1, 224, 448, 24, 448, 224, 1, 8, 1, 1, 8, 1, 8, 744, 13, 13, 744, 8, 1, 8, 1
Offset: 1
Examples
Table begins: ================================================ m\n | 1 2 3 4 5 6 7 8 9 10 ... -----+------------------------------------------ 1 | 1 2 1 1 1 1 1 1 1 1 ... 2 | 2 4 1 7 8 8 8 8 8 8 ... 3 | 1 1 2 1 1 1 1 1 1 1 ... 4 | 1 7 1 16 62 10 48 224 8 80 ... 5 | 1 8 1 62 126 11 448 744 8 1898 ... 6 | 1 8 1 10 11 24 13 14 15 16 ... 7 | 1 8 1 48 448 13 800 6408 8 5240 ... 8 | 1 8 1 224 744 14 6408 16288 8 82128 ... 9 | 1 8 1 8 8 15 8 8 16 8 ... 10 | 1 8 1 80 1898 16 5240 82128 8 87216 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..435 (first 29 antidiagonals)
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Grid Graph.
Formula
T(m,n) = T(n,m).