cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381497 a(n) = sum of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 9, 0, 6, 6, 25, 0, 36, 0, 49, 45, 42, 0, 81, 0, 100, 84, 121, 0, 144, 45, 169, 96, 196, 0, 315, 0, 210, 198, 289, 175, 354, 0, 361, 273, 430, 0, 609, 0, 484, 435, 529, 0, 648, 140, 655, 459, 676, 0, 801, 385, 826, 570, 841, 0, 1260, 0, 961, 798
Offset: 1

Views

Author

Michael De Vlieger, Mar 02 2025

Keywords

Comments

Analogous to A066760(n), the sum of row n of A133995, and A381499(n), sum of row n of A272619.

Examples

			Table of n and a(n) for select n, showing prime power decomposition of both and row n of A381094:
   n   Factor(n) a(n)  Factor(a(n))  Row n of A381094
  -------------------------------------------------------------------
   6   2 * 3       9   3^2           {2,3,4}
   8   2^3         6   2 * 3         {6}
   9   3^2         6   2 * 3         {6}
  10   2 * 5      25   5^2           {2,4,5,6,8}
  12   2^2 * 3    36   2^2 * 3^2     {2,3,4,8,9,10}
  14   2 * 7      49   7^2           {2,4,6,7,8,10,12}
  15   3 * 5      45   3^2 * 5       {3,5,6,9,10,12}
  16   2^4        42   2 * 3 * 7     {6,10,12,14}
  18   2 * 3^2    81   3^4           {2,3,4,8,9,10,14,15,16}
  20   2^2 * 5   100   2^2 * 5^2     {2,4,5,6,8,12,14,15,16,18}
  21   3 * 7      84   2^2 * 3 * 7   {3,6,7,9,12,14,15,18}
  22   2 * 11    121   11^2          {2,4,6,8,10,11,12,14,16,18,20}
  24   2^3 * 3   144   2^4 * 3^2     {2,3,4,8,9,10,14,15,16,20,21,22}
a(6) = (2+4) + (3) = 9,
a(n) = 6 for n in {8, 9} since 6 is the only number less than n that shares a factor with n but does not have the same squarefree kernel as n.
a(10) = (2+4+6+8) + (5) = 25.
a(12) = (2+4+8+10) + (3+9) = 36.
a(14) = (2+4+6+8+10+12) + (7) = 49.
a(15) = (3+6+9+12) + (5+10) = 45.
a(16) = (6+10+12+14) = 42, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]

Formula

a(n) is the sum of row n of A381094.
a(n) = 0 for prime n and n = 4.
a(n) = A067392(n) - A381498(n).