A381500 a(n) = A019565(A187769(n)).
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 165, 154, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 195, 182, 273, 455, 286, 429, 715, 1001, 390, 546, 910, 1365, 858, 1430, 2145, 2002, 3003
Offset: 0
Examples
Table begins: Row 0: 1; Row 1: 2; Row 2: 3, 6; Row 3: 5, 10, 15, 30; Row 4: 7, 14, 21, 35, 42, 70, 105, 210; Row 5: 11, 22, 33, 55, 77, 66, 110, 165, 154, 231, 385, 330, 462, 770, 1155, 2310; ... Table of a(n) for n = 0..31, demonstrating relationship of this sequence with s = A187769: <-factors <-factors n a(n) 2 3 5 7 s(n) | n a(n) 2 3 5 7 11 s(n) -------------------------|---------------------------- 0 1 . 0 | 16 11 . . . . x 16 1 2 x 1 | 17 22 x . . . x 17 2 3 . x 2 | 18 33 . x . . x 18 3 6 x x 3 | 19 55 . . x . x 20 4 5 . . x 4 | 20 77 . . . x x 24 5 10 x . x 5 | 21 66 x x . . x 19 6 15 . x x 6 | 22 110 x . x . x 21 7 30 x x x 7 | 23 165 . x x . x 22 8 7 . . . x 8 | 24 154 x . . x x 25 9 14 x . . x 9 | 25 231 . x . x x 26 10 21 . x . x 10 | 26 385 . . x x x 28 11 35 . . x x 12 | 27 330 x x x . x 23 12 42 x x . x 11 | 28 462 x x . x x 27 13 70 x . x x 13 | 29 770 x . x x x 29 14 105 . x x x 14 | 30 1155 . x x x x 30 15 210 x x x x 15 | 31 2310 x x x x x 31 -------------------------|---------------------------- 1 2 4 8 s(n) | 1 2 4 8 16 s(n) bits-> bits->
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16383
- Michael De Vlieger, Log log scatterplot of a(n), n = 0..2^16-1.
- Michael De Vlieger, Plot p | a(n) at (x,y) = (n, pi(p)), n = 0..2047, 12X vertical exaggeration.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2048, with a color function showing smallest and greatest terms in each row in green and red, respectively.
Crossrefs
Programs
-
Mathematica
a187769 = {{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten; a019565[x_] := Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[x, 2]; Map[a019565, a187769]
Formula
As an irregular triangle T(n,k), where row 0 = {1}:
For n > 1, omega(T(n,1)) = 1, omega(T(n, 2^(n-1))) = n, thus row n is divided into n segments S such that with S, omega(T(n,k)) = m, where m = 1..n. (See A187769 for the lengths of segments associated with Pascal's triangle A007318.)
S(-1,-1) = (1).
For n >= 0:
S(n-1, n) = (); S(n, -1) = ();
Comments