A381507 Squarefree numbers k such that the sum of 1/(p-1) over the prime divisors p of k is 1.
2, 1365, 73815, 6702045, 8788065, 26241285, 32426205, 237539445, 269409855, 445317015, 475231515, 709296105, 1085962395, 1329722835, 1447857915, 2403281595, 3255993615, 5145721455, 5254163355, 5824953435, 6560751435, 7176232455, 7703697855, 8332635255, 8542035645
Offset: 1
Keywords
Examples
1365 is a term because 1365 = 3 * 5 * 7 * 13 and 1/(3-1) + 1/(5-1) + 1/(7-1) + 1/(13-1) = 1/2 + 1/4 + 1/6 + 1/12 = 1.
Programs
-
Maple
filter:= proc(n) local F,t; F:=ifactors(n)[2]; if F[..,2] <> [1$nops(F)] then return false fi; add(1/(t-1),t=F[..,1]) = 1 end proc: select(filter, [2, seq(i,i=1..10^8,2)]);
Extensions
More terms from Giorgos Kalogeropoulos, Apr 27 2025
Comments