cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381533 Number of labeled histories for rooted 5-furcating trees with 4n+1 leaves if simultaneous 5-furcations are allowed.

Original entry on oeis.org

1, 1, 126, 198198, 1552358808, 41269930621920, 2917021792126858416, 466738566750935966462976, 150642168106131265276308435840, 89930728809765858827345682838905216, 92814015425659158860323886440105229380608, 156870775305420194841270876582071899442900414976, 415352074564676036635314305973768435826840253066044416
Offset: 0

Views

Author

Noah A Rosenberg, Feb 26 2025

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add((4*n+1)!/
          (i!*120^i*(4*n+1-5*i)!)*a(n-i), i=1..(4*n+1)/5))
        end:
    seq(a(n), n=0..12);  # Alois P. Heinz, Feb 26 2025

Formula

a(n) = Y(4n+1), where Y(n) = Sum_{i=1..floor(n/5)} (n!/(i!*120^i*(n-5*i)!)) * Y(n-4*i), with Y(1)=1.

A381536 Number of labeled histories for rooted 4-furcating trees with 3n+1 leaves if simultaneous 4-furcations are not allowed.

Original entry on oeis.org

1, 1, 35, 7350, 5255250, 9564555000, 37072215180000, 271183254041700000, 3430468163627505000000, 70238835650273164875000000, 2210064963735845132791875000000, 102493972758213553878355995000000000, 6769214430816214165896021689775000000000, 618638506832293812621237422228537250000000000
Offset: 0

Views

Author

Noah A Rosenberg, Feb 26 2025

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (3*n+1)!/24^n*mul(3*i-2, i=1..n):
    seq(a(n), n=0..13);  # Alois P. Heinz, Feb 26 2025

Formula

a(n) = ((3*n+1)!/24^n) * Product_{i=1..n} (3*i-2).
Showing 1-2 of 2 results.