A381529
T(n,k) is the number of permutations of [n] having exactly k pairs of integers i=0, 0<=k<=A125811(n)-1, read by rows.
1, 1, 2, 5, 1, 15, 5, 4, 54, 21, 24, 16, 5, 235, 89, 118, 112, 101, 35, 28, 2, 1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14, 7790, 2106, 3023, 3529, 4410, 4463, 4600, 3012, 2789, 1933, 1438, 629, 442, 122, 34, 57581, 12529, 17693, 20980, 27208, 30064, 35359, 33332, 28137, 24970, 22850, 17148, 14272, 8645, 5639, 3684, 1809, 664, 282, 34
Offset: 0
Examples
T(4,0) = 15: (1)(2)(3)(4), (1,2)(3)(4), (1)(2,3)(4), (1)(2)(3,4), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4), (1)(2,3,4), (1)(2,4,3), (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2). T(4,1) = 5: (1)(2,4)(3), (1,2,4)(3), (1,4,2)(3), (1,3)(2)(4), (1,3)(2,4). T(4,2) = 4: (1,4)(2)(3), (1,4)(2,3), (1,3,4)(2), (1,4,3)(2). Triangle T(n,k) begins: 1; 1; 2; 5, 1; 15, 5, 4; 54, 21, 24, 16, 5; 235, 89, 118, 112, 101, 35, 28, 2; 1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14; ...
Links
- Alois P. Heinz, Rows n = 0..55, flattened
- Wikipedia, Inversion
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(o, u, t) option remember; expand(`if`(u+o=0, max(0, t-1)!, `if`(t>0, b(u+o, 0$2)*(t-1)!, 0)+add(x^(u+j-1)* b(o-j, u+j-1, t+1), j=`if`(t=0, 1, 1..o)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..10);
Formula
Sum_{k>=1} k * T(n,k) = A126673(n)/2.