A381587 a(1) = 1; thereafter the sequence is extended by iteratively appending the run length transform of the reverse of the sequence thus far.
1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3
Offset: 1
Examples
Irregular triangle begins: 1; 1; 2; 1,2; 1,1,1,2; 1,3,1,1,1,2; 1,3,1,1,1,3,1,1,1,2; 1,3,1,3,1,1,1,3,1,1,1,3,1,1,1,2; 1,3,1,3,1,3,1,1,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1,1,1,2; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..9259 (first 20 rows)
Crossrefs
Programs
-
PARI
\\ From Paul D. Hanna, Mar 03 2025: (Start) \\ RUNS(V) Returns vector of run lengths in vector V: {RUNS(V) = my(R=[],c=1);if(#V>1, for(n=2,#V, if(V[n]==V[n-1], c=c+1, R=concat(R,c); c=1))); R=concat(R,c)} \\ REV(V) Reverses order of vector V: {REV(V) = Vec(Polrev(Ser(V)))} \\ Generates N rows as a vector A of row vectors {N=15; A=vector(N);A[1]=[1];A[2]=[1];A[3]=[2]; for(n=3,#A-1, A[n+1] = concat(RUNS(REV(A[n])),A[n]);); A} for(n=1,N,print(A[n])) \\ Print N rows of this triangle (End)
Comments