cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A381613 If n = Product (p_j^k_j) then a(n) = Product (min(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Comments

First differs from A323308 at n = 27.

Examples

			a(18) = 2 because 18 = 2^1*3^2, min(2,1) = 1, min(3,2) = 2 and 1*2 = 2.
a(300) = 4 because 300 = 2^2*3^1*5^2, min(2,2) = 2, min(3,1) = 1, min(5,2) = 2 and 2*1*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    A381613[n_] := Times @@ Min @@@ FactorInteger[n];
    Array[A381613, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, min(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1/p - 1/p^p)/(p-1)) = 1.59383299054679951264... . - Amiram Eldar, Mar 07 2025
Showing 1-1 of 1 results.