A381650 Pentagonal numbers which are products of three distinct primes.
70, 590, 651, 715, 782, 1001, 1162, 1335, 1426, 2035, 2882, 5551, 5735, 6305, 6501, 7107, 7526, 8177, 8626, 9087, 9322, 10795, 11837, 12927, 14065, 20126, 22265, 24897, 25285, 26467, 28085, 29751, 31901, 32782, 34126, 35497, 36895, 37367, 38801, 40262, 41251, 43265, 44807, 45327
Offset: 1
Keywords
Examples
A000326(7) = 70 = 7*(3*7-1)/2 = 2*5*7. A000326(20) = 590 = 20*(3*20-1)/2 = 2*5*59. A000326(21) = 651 = 21*(3*21-1)/2 = 3*7*31.
Links
- Robert Israel, Table of n, a(n) for n = 1..703
Programs
-
Maple
N:= 10^5: # for terms <= N ispent:= proc(n) issqr(1+24*n) and sqrt(1+24*n) mod 6 = 5 end proc: P:= select(isprime,[2,seq(i,i=3..N/6,2)]): R:= {}: nP:= nops(P): for i1 from 3 to nP do p1:= P[i1]; for i2 from 1 to i1-1 while p1 * P[i2] <= N/2 do p1p2:= p1*P[i2]; m:= ListTools:-BinaryPlace(P[1..i2-1],N/p1p2); V:=select(ispent, P[1..m] *~ p1p2); if V <> [] then R:= R union convert(V,set); fi od od: sort(convert(R,list));# Robert Israel, Mar 10 2025
-
Mathematica
Select[Table[n*(3*n-1)/2, {n, 1, 200}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Mar 03 2025 *)
-
PARI
lista(n)= my(i=0); vector(n, t, while(factor(t=i++*(3*i-1)/2)[, 2]~ != [1, 1, 1], ); t); \\ Ruud H.G. van Tol, Mar 10 2025