cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381669 The function A(x) = x+(1/2)*x^2-(1/16)*x^4... = Sum_{k >= 0} x^k*a(k)/A381670(k) satisfies the functional equation: x*(A(x)+1) = A(A(x)).

Original entry on oeis.org

0, 1, 1, 0, -1, 1, -1, -1, 113, -19, -1049, 849, 10171, -67975, 183735, 143679, -81627111, -135422127, 3045667427, 341639611, -225862086367, 212228801943, 8911194501081, -5123304557653, -1496818714531027, 6387545555294289, 64005829810291411, -250179519280324047
Offset: 0

Views

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Crossrefs

Cf. A381670 ( denominators ).
Cf. A381666 ( A(x)+x = x*A(A(x)) ).
Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    compose(v) = polcoeff(subst(Polrev(v),x,Polrev(v)),#v-1)
    optimize(v) = { my(r=1,z = v[#v],t = compose(concat(v,r))); while(t<>z, r = r+(z-t)/2; t = compose(concat(v,r)));concat(v,r) }
    listA(max_n) = { my(v=[0, 1], out=[0, 1]); while(#v