cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381675 a(n) = p*2^(p - 1)*(p - 1)!, where p = prime(n).

Original entry on oeis.org

4, 24, 1920, 322560, 40874803200, 25505877196800, 23310331287699456000, 31888533201572855808000, 108431217215972213061058560000, 2373442412632986039472006832848896000000, 8829205774994708066835865418197893120000000, 945837910352576904120619801361499836578686566400000000
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2025

Keywords

Comments

Let k = 2*prime(n). Then a(n) = product of multiples m*p < k, p|k.
Proper subset of A025487, itself a proper subset of A055932.

Examples

			Table of n, A100484(n), and a(n) for n = 1..12, showing prime power decomposition via a list of exponents of prime factors:
                                  Exponents of prime factors:
                                           1 1 1 1 2 2 3 3
 n  2*prime(n)             a(n)   2  3 5 7 1 3 7 9 3 9 1 7
----------------------------------------------------------
 1    4                      4    2
 2    6                     24    3. 1
 3   10                   1920    7. 1.1
 4   14                 322560   10. 2.1.1
 5   22            40874803200   18. 4.2.1.1
 6   26         25505877196800   22. 5.2.1.1.1
 7   34   23310331287699456000   31. 6.3.2.1.1.1
 8   38                          34. 8.3.2.1.1.1.1
 9   46                          41. 9.4.3.2.1.1.1.1
10   58                          53.13.6.4.2.2.1.1.1.1
11   62                          56.14.7.4.2.2.1.1.1.1.1
12   74                          70.17.8.5.3.2.2.1.1.1.1.1
----------------------------------------------------------
                                           1 1 1 1 2 2 3 3
                                  2  3 5 7 1 3 7 9 3 9 1 7
a(1) = 4 = 2*2.
a(2) = 24 = (2*4) * 3.
a(3) = 1920 = (2*4*6*8) * 5.
a(4) = 322560 = (2*4*6*8*10*12) * 7, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; p*2^(p - 1)*(p - 1)!, {n, 12}]

Formula

a(n) = Product_{p|k} Product_{m=1..k/p-1} m*p, where k = 2*prime(n).
gpf(a(n)) = prime(n).