cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381680 Euler transform of A115224.

Original entry on oeis.org

1, 1, 29, 263, 1565, 11217, 74412, 482638, 2987123, 18066149, 107415185, 623612637, 3552605428, 19882256022, 109518424910, 594290145192, 3179607733480, 16790129919934, 87573088547032, 451477766533886, 2302069862201553, 11616226357007259, 58036597014533469
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[6, k^2]/DivisorSigma[3, k^2]*a[n-k], {k, 1, n}]/n; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Mar 04 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 6)/sigma(k^2, 3)*x^k/k)))

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A115224(k).
G.f.: exp( Sum_{k>=1} sigma_6(k^2)/sigma_3(k^2) * x^k/k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} sigma_6(k^2)/sigma_3(k^2) * a(n-k).
log(a(n)) ~ 7 * 5^(2/7) * zeta(7)^(1/7) * n^(6/7) / (2^(2/7) * 3^(3/7) * Pi^(4/7)). - Vaclav Kotesovec, Mar 04 2025