A381700 a(n) is the smallest multiple k*n that contains all the distinct digits of n, where k > 0 must have at least one digit > 1.
12, 12, 36, 24, 15, 36, 147, 48, 189, 120, 132, 192, 312, 714, 105, 416, 714, 108, 912, 120, 126, 132, 322, 432, 125, 624, 702, 728, 928, 360, 713, 832, 132, 1394, 315, 936, 703, 836, 936, 240, 164, 294, 344, 264, 405, 644, 1457, 384, 294, 150, 153, 1352, 1325, 1458, 165, 1456, 3705, 1508, 295
Offset: 1
Examples
36 is the least nontrivial multiple of 6 that contains the digit 6, so a(6) = 36.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..3500
Crossrefs
Cf. A380885 (without different start constraint).
Programs
-
Magma
A381700 := function(n) S := Set(Intseq(n)); k := 1; repeat k +:= 1; digitsKn := Set(Intseq(k*n)); until (S subset digitsKn) and (Max(Intseq(k)) ge 2); return k*n; end function; [ A381700(n) : n in [1..60] ]; // Vincenzo Librandi, Mar 17 2025
-
Mathematica
A381700[n_Integer]:=Module[{S,k,digitsKn},S=DeleteDuplicates[IntegerDigits[n]]; (* Set of digits of n *) k=1; While[k++; digitsKn=DeleteDuplicates[IntegerDigits[k n]]; !(SubsetQ[digitsKn,S]&&Max[IntegerDigits[k]]>=2)]; k n] (* Vincenzo Librandi, Mar 17 2025 *)
-
PARI
A381700(n)=my(S=Set(digits(n))); for(k=2,oo, #setminus(S,Set(digits(k*n))) || vecmax(digits(k))<2 || return(k*n));
Comments