A381703 Irregular triangle read by rows in which every row of length A071764(n) lists A(n,w,h) = the number of free polyominoes of size n, width w and height h (for w <= h, and all possible w,h pairs).
1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 6, 1, 1, 6, 5, 7, 15, 1, 2, 11, 5, 7, 39, 25, 18, 1, 1, 10, 19, 7, 3, 59, 96, 35, 77, 61, 1, 3, 22, 28, 7, 1, 42, 210, 188, 49, 181, 383, 97, 73, 1, 1, 15, 52, 40, 9, 21, 255, 550, 332, 63, 266, 1304, 822, 155, 529, 240, 1, 3, 45, 90, 53, 9, 4, 212, 954, 1231, 529, 81, 251, 2847, 3548, 1551, 220, 2413, 2366, 410, 255
Offset: 1
Examples
Triangle begins: n 1: 1 2: 1 3: 1 1 4: 1 1 3 5: 1 2 3 6 6: 1 1 6 5 7 15 7: 1 2 11 5 7 39 25 18 8: 1 1 10 19 7 3 59 96 35 77 61 9: 1 3 22 28 7 1 42 210 188 49 181 383 97 73 10: 1 1 15 52 40 9 21 255 550 332 63 266 1304 822 155 529 240 ... Any row contains an irregular array that shows the number of polyominoes having width w and height h. E.g., row 6 contains the array: h/w 1 2 3 1 2 3 1 7 4 6 15 5 5 6 1 . There are 5 polyominoes of size 6 with width 2 and height 5, so A(6,2,5)=5: . OO O O O O O OO O O O O O OO O OO O O O OO O O O O O O
Links
- John Mason, Table of n, a(n) for n = 1..386
Extensions
More terms from John Mason, Mar 07 2025