A381705 Length of iteration sequence of shortest unimodal Collatz (3x+1)/2 sequence that begins with exactly n increases and ends with continuous decreases until reaching 1.
3, 6, 13, 32, 87, 250, 737, 2196, 6571, 19694, 59061, 177160, 531455, 1594338, 4782985, 14348924, 43046739, 129140182, 387420509, 1162261488, 3486784423, 10460353226, 31381059633, 94143178852, 282429536507, 847288609470, 2541865828357, 7625597485016, 22876792454991
Offset: 1
Examples
For n=2, the shortest unimodal sequence has length a(2) = 6 terms and one such sequence is 3 -> 5 -> 8 -> 4 -> 2 -> 1 \-----/ \----------/ 2 increases, then decreases
Links
- David Dewan, Unimodal Collatz Sequences
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Programs
-
Mathematica
LinearRecurrence[{5,-7,3},{3,6,13},29] (* James C. McMahon, Apr 02 2025 *)
Formula
a(n) = n + 3^(n-1) + 1.
From Stefano Spezia, Mar 07 2025: (Start)
G.f.: x*(3 - 9*x + 4*x^2)/((1 - x)^2*(1 - 3*x)).
E.g.f.: (exp(3*x) + 3*exp(x)*(1 + x) - 4)/3. (End)
Comments