cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381711 a(n) = A379597(n) - A381710(n).

Original entry on oeis.org

1, 3, 7, 13, 25, 41, 65, 93, 133, 177, 245, 305, 397, 489, 609, 725, 893, 1029, 1241, 1425, 1665, 1889, 2209, 2457, 2821, 3145, 3549, 3913, 4429, 4805, 5397, 5885, 6493, 7045, 7781, 8341, 9185, 9881, 10745, 11489, 12545, 13297, 14453, 15385, 16497, 17517, 18917
Offset: 1

Views

Author

Felix Huber, Mar 08 2025

Keywords

Comments

a(n) is odd.

Crossrefs

Programs

  • Maple
    A381711:=proc(n)
       option remember;
       local a,u,v,w;
       if n=1 then
          1
       else
          a:=0;
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                if igcd(u,v,w)=1 and v<>0 then
                   if w=0 or w=v^2/(4*u) then
                      a:=a+2
                   elif wA381711(n),n=1..47);

Formula

a(n) = A379597(n) - A381710(n).

A379597 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a nonnegative discriminant.

Original entry on oeis.org

1, 4, 12, 24, 50, 80, 134, 192, 276, 366, 510, 632, 834, 1018, 1262, 1502, 1858, 2136, 2584, 2956, 3448, 3910, 4576, 5076, 5834, 6488, 7320, 8066, 9136, 9892, 11118, 12114, 13358, 14482, 15978, 17108, 18862, 20272, 22024, 23532, 25700, 27216, 29600, 31486, 33746
Offset: 1

Views

Author

Felix Huber, Feb 18 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and nonnegative discriminant v^2 - 4*u*w have two real solutions.
a(n) is even for n >= 2.

Examples

			a(3) = 12 because there are 12 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a nonnegative discriminant: (u, v, w) = (1, 0, 0), (1, -1, 0), (1, 1, 0), (1, 0, -1), (1, -1, -1), (1, 1, -1), (1, -2, 0), (1, 2, 0), (1, 0, -2), (2, -1, 0), (2, 1, 0), and (2, 0, -1). Multiplied equations like 2*(1, 0, 0) = (2, 0, 0) or (-1)*(1, -1, 0) = (-1, 1, 0) do not have a distinct solution set.
		

Crossrefs

Programs

  • Maple
    A379597:=proc(n)
       option remember;
       local a,u,v,w;
       if n=1 then
          1
       else
          a:=0;	
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                if igcd(u,v,w)=1 then
                   if v=0 then
                      a:=a+1
                   elif w=0 or w>=v^2/(4*u) then
                      a:=a+2
                   else
                      a:=a+4
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A379597(n),n=1..45);
Showing 1-2 of 2 results.