cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379597 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a nonnegative discriminant.

Original entry on oeis.org

1, 4, 12, 24, 50, 80, 134, 192, 276, 366, 510, 632, 834, 1018, 1262, 1502, 1858, 2136, 2584, 2956, 3448, 3910, 4576, 5076, 5834, 6488, 7320, 8066, 9136, 9892, 11118, 12114, 13358, 14482, 15978, 17108, 18862, 20272, 22024, 23532, 25700, 27216, 29600, 31486, 33746
Offset: 1

Views

Author

Felix Huber, Feb 18 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and nonnegative discriminant v^2 - 4*u*w have two real solutions.
a(n) is even for n >= 2.

Examples

			a(3) = 12 because there are 12 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a nonnegative discriminant: (u, v, w) = (1, 0, 0), (1, -1, 0), (1, 1, 0), (1, 0, -1), (1, -1, -1), (1, 1, -1), (1, -2, 0), (1, 2, 0), (1, 0, -2), (2, -1, 0), (2, 1, 0), and (2, 0, -1). Multiplied equations like 2*(1, 0, 0) = (2, 0, 0) or (-1)*(1, -1, 0) = (-1, 1, 0) do not have a distinct solution set.
		

Crossrefs

Programs

  • Maple
    A379597:=proc(n)
       option remember;
       local a,u,v,w;
       if n=1 then
          1
       else
          a:=0;	
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                if igcd(u,v,w)=1 then
                   if v=0 then
                      a:=a+1
                   elif w=0 or w>=v^2/(4*u) then
                      a:=a+2
                   else
                      a:=a+4
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A379597(n),n=1..45);

A381710 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a negative discriminant.

Original entry on oeis.org

0, 1, 5, 11, 25, 39, 69, 99, 143, 189, 265, 327, 437, 529, 653, 777, 965, 1107, 1343, 1531, 1783, 2021, 2367, 2619, 3013, 3343, 3771, 4153, 4707, 5087, 5721, 6229, 6865, 7437, 8197, 8767, 9677, 10391, 11279, 12043, 13155, 13919, 15147, 16101, 17249, 18301, 19763
Offset: 1

Views

Author

Felix Huber, Mar 06 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and negative discriminant v^2 - 4*u*w have two complex solutions.
a(n) is odd for n >= 2.

Examples

			a(3) = 5 because there are 5 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a negative discriminant: (u, v, w) = (1, 0, 1), (1, -1, 1), (1, 1, 1), (1, 0, 2), (2, 0, 1). Multiplied equations like (-1)*(1, -1, 1) = (-1, 1, -1) do not have a distinct solution set.
		

Crossrefs

Programs

  • Maple
    A381710:=proc(n)
       option remember;
       local a,u,v,w;
          if n=1 then
          0
       else
          a:=0;
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                   if igcd(u,v,w)=1 then
                      if v=0 then
                         a:=a+1
                      elif w>v^2/(4*u) then
                        a:=a+2
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A381710(n),n=1..47);
Showing 1-2 of 2 results.